Sorafenib suppresses the epithelial-mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency ablation

[1]  Lian-Yue Yang,et al.  MicroRNA‐331‐3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine‐rich repeat protein phosphatase , 2014, Hepatology.

[2]  C. Porta,et al.  Targeting PI3K/Akt/mTOR Signaling in Cancer , 2014, Front. Oncol..

[3]  H. Fukuda,et al.  Hepatocellular carcinoma: concomitant sorafenib promotes necrosis after radiofrequency ablation--propensity score matching analysis. , 2014, Radiology.

[4]  Jae Young Lee,et al.  Radiofrequency ablation of hepatocellular carcinoma as first-line treatment: long-term results and prognostic factors in 162 patients with cirrhosis. , 2014, Radiology.

[5]  D. Xie,et al.  Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial‐mesenchymal transition by way of Akt/GSK‐3β/Snail signaling , 2014, Hepatology.

[6]  Q. Shen,et al.  YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma , 2014, Molecular Cancer.

[7]  D. Schuppan,et al.  Sublethal heat treatment promotes epithelial‐mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma , 2013, Hepatology.

[8]  Lemin Zheng,et al.  Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways , 2013, Journal of Translational Medicine.

[9]  Xu He,et al.  Sorafenib in combination with transarterial chemoembolization and radiofrequency ablation in the treatment for unresectable hepatocellular carcinoma , 2013, Medical Oncology.

[10]  Can Xu,et al.  MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. , 2013, Cancer letters.

[11]  L. Xu,et al.  Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: potential roles in the inhibition of epithelial–mesenchymal transition and fibroblast activation , 2013, Cell Death and Disease.

[12]  G. Ji,et al.  Sorafenib Inhibits Epithelial-Mesenchymal Transition through an Epigenetic-Based Mechanism in Human Lung Epithelial Cells , 2013, PloS one.

[13]  J. Tabernero,et al.  Development of PI3K inhibitors: lessons learned from early clinical trials , 2013, Nature Reviews Clinical Oncology.

[14]  Xiaohui Xie,et al.  Sorafenib suppresses the rapid progress of hepatocellular carcinoma after insufficient radiofrequency ablation therapy: An experiment in vivo , 2013, Acta radiologica.

[15]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[16]  Huichuan Sun,et al.  After insufficient radiofrequency ablation, tumor-associated endothelial cells exhibit enhanced angiogenesis and promote invasiveness of residual hepatocellular carcinoma , 2012, Journal of Translational Medicine.

[17]  M. Loriot,et al.  Early Sorafenib-Induced Toxicity Is Associated with Drug Exposure and UGTIA9 Genetic Polymorphism in Patients with Solid Tumors: A Preliminary Study , 2012, PloS one.

[18]  N. Hayashi,et al.  Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma , 2012, International journal of cancer.

[19]  Bing Pan,et al.  Insufficient Radiofrequency Ablation Promotes Angiogenesis of Residual Hepatocellular Carcinoma via HIF-1α/VEGFA , 2012, PloS one.

[20]  Ping Liu,et al.  Sorafenib inhibits transforming growth factor β1‐Mediated Epithelial‐Mesenchymal Transition and apoptosis in mouse hepatocytes , 2011, Hepatology.

[21]  D. Xie,et al.  Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model , 2011, Hepatology.

[22]  M. Kudo,et al.  Sorafenib Inhibits the Hepatocyte Growth Factor–Mediated Epithelial Mesenchymal Transition in Hepatocellular Carcinoma , 2011, Molecular Cancer Therapeutics.

[23]  B. Evers,et al.  PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. , 2010, Anticancer research.

[24]  Jian Kong,et al.  Low temperature of radiofrequency ablation at the target sites can facilitate rapid progression of residual hepatic VX2 carcinoma , 2010, Journal of Translational Medicine.

[25]  I. Cuthill,et al.  Reporting : The ARRIVE Guidelines for Reporting Animal Research , 2010 .

[26]  Manabu Watanabe,et al.  Analysis of patients with rapid aggressive tumor progression of hepatocellular carcinoma after percutaneous radiofrequency ablation. , 2009, Hepato-gastroenterology.

[27]  P. V. van Diest,et al.  Accelerated Perinecrotic Outgrowth of Colorectal Liver Metastases Following Radiofrequency Ablation is a Hypoxia-Driven Phenomenon , 2009, Annals of surgery.

[28]  F. Itoh,et al.  Insufficient radiofrequency ablation therapy may induce further malignant transformation of hepatocellular carcinoma , 2008, Hepatology international.

[29]  S. Wilhelm,et al.  Discovery and development of sorafenib: a multikinase inhibitor for treating cancer , 2006, Nature Reviews Drug Discovery.

[30]  A. Ruzzenente,et al.  Rapid progression of hepatocellular carcinoma after Radiofrequency Ablation. , 2004, World journal of gastroenterology.

[31]  T. Seki,et al.  Rapid progression of hepatocellular carcinoma after transcatheter arterial chemoembolization and percutaneous radiofrequency ablation in the primary tumour region. , 2001, European journal of gastroenterology & hepatology.

[32]  Kuen-Feng Chen,et al.  Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. , 2010, Journal of hepatology.

[33]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.