Graph Mining : An Overview

In the early years of data mining and knowledge discovery in databases, method development focused on rigidly and plainly structured data. Most often efforts were even confined to data that can be represented as a simple table, which describes a set of sample cases by attribute-value pairs. Recent years, however, have seen a constantly growing interest in the analysis of more complex data, with a less rigid and/or more sophisticated structure.

[1]  Christian Borgelt Combining Ring Extensions and Canonical Form Pruning , 2006 .

[2]  Jan Ramon,et al.  Frequent subgraph mining in outerplanar graphs , 2006, KDD.

[3]  Lawrence B. Holder,et al.  Graph-Based Data Mining , 2000, IEEE Intell. Syst..

[4]  Jan Ramon,et al.  Polynomial-Delay Enumeration of Monotonic Graph Classes , 2009, J. Mach. Learn. Res..

[5]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[6]  Aristides Gionis,et al.  Mining Graph Evolution Rules , 2009, ECML/PKDD.

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  Christian Borgelt,et al.  Large scale mining of molecular fragments with wildcards , 2004, Intell. Data Anal..

[9]  Ashwin Srinivasan,et al.  Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL , 1998, Machine Learning.

[10]  Jérôme Kunegis,et al.  Learning spectral graph transformations for link prediction , 2009, ICML '09.

[11]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[12]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[13]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[14]  Hannu Toivonen,et al.  Link Discovery in Graphs Derived from Biological Databases , 2006, DILS.

[15]  Pierre Hansen,et al.  Improving Frequent Subgraph Mining in the Presence of Symmetry , 2007, MLG.

[16]  Thomas Gärtner,et al.  Kernels for structured data , 2008, Series in Machine Perception and Artificial Intelligence.

[17]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[18]  Mehryar Mohri,et al.  Rational Kernels: Theory and Algorithms , 2004, J. Mach. Learn. Res..

[19]  Christos Faloutsos,et al.  Using ghost edges for classification in sparsely labeled networks , 2008, KDD.

[20]  S. V. N. Vishwanathan,et al.  Fast Computation of Graph Kernels , 2006, NIPS.

[21]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[22]  Alexander J. Smola,et al.  Fast Kernels for String and Tree Matching , 2002, NIPS.

[23]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[24]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[25]  George Karypis,et al.  Within-Network Classification Using Local Structure Similarity , 2009, ECML/PKDD.

[26]  Kevin Françoisse,et al.  Semi-supervised Classification from Discriminative Random Walks , 2008, ECML/PKDD.

[27]  Joost N. Kok,et al.  The Gaston Tool for Frequent Subgraph Mining , 2005, GraBaTs.

[28]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[29]  Luc De Raedt,et al.  Molecular feature mining in HIV data , 2001, KDD '01.

[30]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[31]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[32]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[33]  Christian Borgelt,et al.  Mining Fragments with Fuzzy Chains in Molecular Databases , 2004 .

[34]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[35]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[36]  Christian Borgelt,et al.  Canonical Forms for Frequent Graph Mining , 2006, GfKl.

[37]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[38]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[39]  Kamalakar Karlapalem,et al.  MARGIN: Maximal Frequent Subgraph Mining , 2006, Sixth International Conference on Data Mining (ICDM'06).

[40]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[41]  H. Kashima,et al.  Kernels for graphs , 2004 .

[42]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[43]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[44]  Ronen Feldman,et al.  The Text Mining Handbook: DIAL: A Dedicated Information Extraction Language for Text Mining , 2006 .

[45]  Yun Chi,et al.  Frequent Subtree Mining - An Overview , 2004, Fundam. Informaticae.

[46]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[47]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[48]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[49]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[50]  HoferHeiko,et al.  Large scale mining of molecular fragments with wildcards , 2004 .