Time-dependent diffusion model for sea clutter dynamics

ABSTRACT Sea clutter models play a critical role in cognitive radar waveform design and target detection. In this paper, a new sea clutter modelling using Stochastic Differential Equations (SDEs) is proposed to improve clutter amplitude dynamic prediction. The Extended Vasicek model (EV), a nonstationary time-varying diffusion model, is leveraged as the framework. Model parameters are estimated using the observations in a short time interval in temporal dimension before the prediction time, providing an accurate and real-time prediction which is critical in cognitive radars deployed in marine environments. The method is evaluated in terms of mean-squared Error (MSE), mean absolute error (MAE), mean relative error (MRE), relative standard error (RSE), the complementary cumulative distribution function (CCDF) and the Kolmogorov-Smirnov statistical distance . The performance of the method is compared through experimental radar data with the state-of-the-art models such as generalized autoRegressive conditional heteroskedasticity (GARCH) model, Weibull, log-normal, K and log-logistic distributions. It is demonstrated that the proposed model outperforms other state-of-the-art methods in terms of all the above-mentioned metrics.

[1]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[2]  Jianghong Shi,et al.  Detection in sea clutter based on nonlinear ARCH model , 2016, Digit. Signal Process..

[3]  Murat Kulahci,et al.  Introduction to Time Series Analysis and Forecasting , 2008 .

[4]  Brenda Faith Ginos Parameter Estimation for the Lognormal Distribution , 2009 .

[5]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[6]  Torbjørn Eltoft,et al.  Non-Gaussian signal statistics in ocean SAR imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  Henrik Madsen,et al.  Short-term probabilistic forecasting of wind speed using stochastic differential equations , 2016 .

[8]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[9]  Matsuo Sekine,et al.  Log-Normal, Log-Weibull and K-Distributed Sea Clutter , 2002 .

[10]  Donald E Jarvis,et al.  Application of Statistical Linear Time-Varying System Theory to Modeling of High Grazing Angle Sea Clutter , 2017 .

[11]  D. Schleher,et al.  Radar Detection in Weibull Clutter , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Min Zhang,et al.  A reassigned bilinear transformation and Gaussian kernel function-based approach for detecting weak targets in sea clutter , 2016 .

[13]  Carla Freitas de Andrade,et al.  Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil , 2012 .

[14]  I. Pobocikova,et al.  Comparison of four methods for estimating the Weibull distribution parameters , 2014 .

[15]  R. Friedrich,et al.  Physics of brain dynamics: Fokker–Planck analysis reveals changes in EEG δ–θ interactions in anæsthesia , 2009 .

[16]  Carlos H. Muravchik,et al.  Adaptive Radar Detection Algorithm Based on an Autoregressive GARCH-2D Clutter Model , 2014, IEEE Transactions on Signal Processing.

[17]  Muhammad Sahimi,et al.  Approaching complexity by stochastic methods: From biological systems to turbulence , 2011 .

[18]  P J Beek,et al.  Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Min Wang,et al.  Improved parameter estimation of the log-logistic distribution with applications , 2018, Comput. Stat..

[20]  Donald E. Jarvis,et al.  Application of a Statistical Linear Time-Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power , 2017 .

[21]  Corey D. Cooke Scattering function approach for modeling time-varying sea clutter returns , 2018, 2018 IEEE Radar Conference (RadarConf18).

[22]  Jianqing Fan,et al.  Time-dependent Diffusion Models for Term Structure Dynamics and the Stock Price Volatility , 2003 .

[23]  Ratnasingham Tharmarasa,et al.  Heavy-tailed sea clutter modeling for shore-based radar detection , 2018, 2018 IEEE Radar Conference (RadarConf18).

[24]  Abdelhak M. Zoubir,et al.  Estimation of the Parameters of the K-distributed Using Higher Order and Fractional Moments , 1999 .

[25]  Susanne Ditlevsen,et al.  Introduction to stochastic models in biology. , 2013 .

[26]  Simon Haykin,et al.  The Impact of Cognition on Radar Technology , 2017 .

[27]  Corey Cooke Analytic Expressions for Radar Sea Clutter WSSUS Scattering Functions † , 2019, Entropy.

[28]  R. Gnanadesikan,et al.  Probability plotting methods for the analysis of data. , 1968, Biometrika.

[29]  G. Liao,et al.  PolSAR ship detection based on the contrast enhancement of polarimetric scattering differences , 2019, International Journal of Remote Sensing.

[30]  S. F. George,et al.  Detection of Targets in Non-Gaussian Sea Clutter , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[31]  R. Garello,et al.  2D ocean surface SAR images simulation: a statistical approach , 1993, Proceedings of OCEANS '93.

[32]  T. K. Cheung Can better environmental inputs improve sea clutter estimation? A numerical experiment , 1989 .

[33]  C. Oliver A Model for Non-Rayleigh Scattering Statistics , 1984 .

[34]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[35]  Carlos H. Muravchik,et al.  Radar detection algorithm for GARCH clutter model , 2013, Digit. Signal Process..

[36]  T. McMillen Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .

[37]  Kazuo Ouchi,et al.  Statistical analysis of azimuth streaks observed in digitally processed CASSIE imagery of the sea surface , 1991, IEEE Trans. Geosci. Remote. Sens..

[38]  Jing Hu,et al.  A New Way to Model Nonstationary Sea Clutter , 2009, IEEE Signal Processing Letters.

[39]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[40]  Corey D. Cooke Analytic Expressions for Radar Sea Clutter WSSUS Scattering Functions , 2019 .

[41]  Jianqing Fan,et al.  A Reexamination of Diffusion Estimators With Applications to Financial Model Validation , 2003 .

[42]  Hui Liu,et al.  Sea clutter modeling using an autoregressive generalized nonlinear-asymmetric GARCH model , 2017, Digit. Signal Process..

[43]  Zu-Guo Yu,et al.  Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition , 2010 .

[44]  Arnaud Coatanhay,et al.  Estimation of the parameters of stochastic differential equations for sea clutter , 2019, IET Radar, Sonar & Navigation.

[45]  Antonia Papandreou-Suppappola,et al.  Computationally Efficient Estimation of Compound K-Distribution Sea Clutter in Thermal Noise and Its Application to Sea Echo Reflectivity Observations , 2020, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Lanqing Huang,et al.  SAR Speckle Dependence on Ocean Surface Wind Field , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Radar Waveform Design Based on Optimization Theory , 2020 .

[48]  S. Watts,et al.  Radar Detection Prediction in K-Distributed Sea Clutter and Thermal Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Simon Haykin,et al.  Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio , 2012 .

[50]  J. Schuermann,et al.  Adaptive radar signal processing , 1979 .

[51]  Abdelhak M. Zoubir,et al.  Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter] , 1999 .

[52]  Simon Haykin,et al.  Nonlinear Dynamics of Sea Clutter , 2008 .

[53]  S. Mehdi Hashemi,et al.  Modeling and Forecasting the Urban Volume Using Stochastic Differential Equations , 2014, IEEE Transactions on Intelligent Transportation Systems.