The Maximum Spectral Radius of Graphs Without Friendship Subgraphs

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly one common vertex is called a k−friendship graph and denoted by Fk. This paper determines the graphs of order n that have the maximum (adjacency) spectral radius among all graphs containing no Fk, for n sufficiently large. Mathematics Subject Classifications: 05C50; 05C38 ∗S. M. Cioabă is partially supported by NSF grants DMS-1600768 and CIF-1815922 and a JSPS Fellowship. †L. Feng is partially supported by NSFC (Nos. 11871479, 11671402), Hunan Provincial Natural Science Foundation (2016JJ2138, 2018JJ2479) and Mathematics and Interdisciplinary Sciences Project of CSU. ‡M. Tait is partially supported by NSF grant DMS-2011553. §X.-D. Zhang is partially supported by NSFC (Nos. 11971311, 11531001); the Montenegrin-Chinese Science and Technology Cooperation Project (No.3-12) (Corresponding author). the electronic journal of combinatorics 27(4) (2020), #P4.22 https://doi.org/10.37236/9179

[1]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[2]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[3]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[4]  Xiao-Dong Zhang,et al.  On the Spectral Radius of Graphs with Cut Vertices , 2001, J. Comb. Theory, Ser. B.

[5]  Zoltán Füredi,et al.  Extremal Graphs for Intersecting Triangles , 1995, J. Comb. Theory, Ser. B.

[6]  Vasek Chvátal Degrees and matchings , 1976 .

[7]  Jonathan Lee,et al.  Eigenvalues of subgraphs of the cube , 2016, Eur. J. Comb..

[8]  Weijun Liu,et al.  Spectral radius and k-connectedness of a graph , 2018 .

[9]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[10]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[11]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[12]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[13]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[14]  R. Stanley A Bound on the Spectral Radius of Graphs with e Edges , 1987 .

[15]  Pierre Hansen,et al.  On bags and bugs , 2005, Discret. Appl. Math..

[16]  Zoltán Füredi,et al.  A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity , 2015, J. Comb. Theory, Ser. B.

[17]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[18]  Weijun Liu,et al.  Spectral conditions for graphs to be β-deficient involving minimum degree , 2018 .

[19]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[20]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[21]  David Conlon,et al.  Graph removal lemmas , 2012, Surveys in Combinatorics.

[22]  Richard A. Brualdi,et al.  On the spectral radius of complementary acyclic matrices of zeros and ones , 1986 .

[23]  P. Hansen,et al.  On the spectral radius of graphs with a given domination number , 2007 .

[24]  Z. Füredi Extremal Hypergraphs and Combinatorial Geometry , 1995 .

[25]  H. L. Abbott,et al.  Intersection Theorems for Systems of Sets , 1972, J. Comb. Theory, Ser. A.

[26]  van Dam Graphs with given diameter maximizing the spectral radius , 2007 .

[27]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[28]  Mark N. Ellingham,et al.  The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.