Jack polynomials for the $BC_n$ root system and generalized spherical functions
暂无分享,去创建一个
[1] J. Stokman,et al. Some limit transitions between BC type orthogonal polynomials interpreted on quantum complex Grassmannians , 1998, math/9806123.
[2] E. Koelink,et al. Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications , 1994, Acta Applicandae Mathematicae.
[3] G. Heckman,et al. Harmonic Analysis and Special Functions on Symmetric Spaces , 1995 .
[4] P. Etingof. Quantum integrable systems and representations of Lie algebras , 1993, hep-th/9311132.
[5] P. Etingof,et al. Spherical functions on affine Lie groups , 1994, hep-th/9407047.
[6] E. Opdam,et al. Root systems and hypergeometric functions. I , 1988 .
[7] S. Helgason. Groups and geometric analysis , 1984 .
[8] A. Perelomov,et al. Quantum Integrable Systems Related to Lie Algebras , 1983 .
[9] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[10] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[11] R. King,et al. Branching rules for classical Lie groups using tensor and spinor methods , 1975 .
[12] Dusa McDuff,et al. HARMONIC ANALYSIS ON SEMI‐SIMPLE LIE GROUPS—I , 1974 .
[13] D. P. Zhelobenko. Compact Lie Groups and Their Representations , 1973 .
[14] Garth Warner,et al. Harmonic Analysis on Semi-Simple Lie Groups II , 1972 .
[15] Francesco Calogero,et al. Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .
[16] B. Sutherland. Exact results for a quantum many body problem in one-dimension , 1971 .
[17] S. Helgason. LIE GROUPS AND SYMMETRIC SPACES. , 1968 .
[18] G. L.. Collected Papers , 1912, Nature.
[19] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .