Jack polynomials for the $BC_n$ root system and generalized spherical functions

We give a construction for three parameter family of Jack polynolials for the root system $BC_n$ through the generalized spherical functions on the symmetric space $GL(m+n)/GL(m)\times GL(n)$.

[1]  J. Stokman,et al.  Some limit transitions between BC type orthogonal polynomials interpreted on quantum complex Grassmannians , 1998, math/9806123.

[2]  E. Koelink,et al.  Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications , 1994, Acta Applicandae Mathematicae.

[3]  G. Heckman,et al.  Harmonic Analysis and Special Functions on Symmetric Spaces , 1995 .

[4]  P. Etingof Quantum integrable systems and representations of Lie algebras , 1993, hep-th/9311132.

[5]  P. Etingof,et al.  Spherical functions on affine Lie groups , 1994, hep-th/9407047.

[6]  E. Opdam,et al.  Root systems and hypergeometric functions. I , 1988 .

[7]  S. Helgason Groups and geometric analysis , 1984 .

[8]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[9]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[10]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[11]  R. King,et al.  Branching rules for classical Lie groups using tensor and spinor methods , 1975 .

[12]  Dusa McDuff,et al.  HARMONIC ANALYSIS ON SEMI‐SIMPLE LIE GROUPS—I , 1974 .

[13]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[14]  Garth Warner,et al.  Harmonic Analysis on Semi-Simple Lie Groups II , 1972 .

[15]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[16]  B. Sutherland Exact results for a quantum many body problem in one-dimension , 1971 .

[17]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[18]  G. L. Collected Papers , 1912, Nature.

[19]  D. E. Littlewood,et al.  Group Characters and Algebra , 1934 .