Some simple coded-modulation schemes for unequal error protection in satellite communications

We present some coded-modulation designs suitable for unequal error protection in digital satellite transmission. Due to the nonlinear nature of the channel, the constellations chosen must have constant envelope, so that signaling schemes derived from PSK should be used. Moreover, the complexity of the design is kept to a minimum.

[1]  Carl-Erik W. Sundberg,et al.  Multi-Level Block Coded Modulations with Unequal Error Protection for the Rayleigh Fading Channel , 1993, Eur. Trans. Telecommun..

[2]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[3]  Jack K. Wolf,et al.  On linear unequal error protection codes , 1967, IEEE Trans. Inf. Theory.

[4]  Larry A. Dunning,et al.  Optimal Encodings of Linear Block Codes for Unequal Error Protection , 1978, Inf. Control..

[5]  Daniel J. Costello,et al.  A bound on the unequal error protection capabilities of rate k/n convolutional codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[6]  Yasuo Hirata,et al.  High-Rate Punctured Convolutional Codes for Soft Decision Viterbi Decoding , 1984, IEEE Trans. Commun..

[7]  Irwin M. Jacobs Probability-of-error bounds for binary transmission on the slowly fading Rician channel , 1966, IEEE Trans. Inf. Theory.

[8]  G. Robert Redinbo The Optimum Mean-Square Decoding of General Block Codes , 1976, Inf. Control..

[9]  M. Simon,et al.  Trellis Coding with Asymmetric Modulations , 1987, IEEE Trans. Commun..

[10]  Lee-Fang Wei,et al.  Coded modulation with unequal error protection , 1993, IEEE Trans. Commun..

[11]  Carl-Erik W. Sundberg,et al.  Coded Modulations for Fading Channels: An Overview , 1993, Eur. Trans. Telecommun..

[12]  Wil J. van Gils,et al.  Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes , 1983, IEEE Trans. Inf. Theory.

[13]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[14]  Robert H. Deng,et al.  Trellis-coded multidimensional phase modulation , 1990, IEEE Trans. Inf. Theory.

[15]  D. J. Costello,et al.  Using a Modified Transfer Function to Calculate Unequal Error Protection Capabilities of Convolutional Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[16]  D. Graupe,et al.  Punctured Convolutional Codes of Rate (n - 1)/n and Simplified Maximum Likelihood Decoding , 1979 .

[17]  G. Robert Redinbo On the design of mean-square error channel coding systems using cyclic codes , 1982, IEEE Trans. Inf. Theory.

[18]  J. Bibb Cain,et al.  Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[19]  G. Robert Redinbo,et al.  The optimum mean-square estimate for decoding binary block codes , 1974, IEEE Trans. Inf. Theory.

[20]  Nambirajan Seshadri,et al.  Multilevel codes for unequal error protection , 1993, IEEE Trans. Inf. Theory.

[21]  Thomas R. Crimmins,et al.  Mean-square-error optimum coset leaders for group codes , 1970, IEEE Trans. Inf. Theory.

[22]  Thomas R. Crimmins,et al.  Minimization of mean-square error for data transmitted via group codes , 1969, IEEE Trans. Inf. Theory.