Erratum to: Production of Bioactive Volatiles by Different Burkholderia ambifaria Strains

[1]  Zhenjing Li,et al.  Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. , 2013, FEMS microbiology letters.

[2]  A. Bailly,et al.  Plant Growth Modulation by Bacterial Volatiles—A Focus on Burkholderia Species , 2013 .

[3]  Jeroen S. Dickschat,et al.  The scent of bacteria: headspace analysis for the discovery of natural products. , 2012, Journal of natural products.

[4]  I. Coosemans,et al.  Dimethyl Disulfide- A Potential Biopesticide Against Root-Knot Nematode of Tomato (Lycopersicon Esculentum L.) , 2012 .

[5]  B. Piechulla,et al.  Volatile Mediated Interactions Between Bacteria and Fungi in the Soil , 2012, Journal of Chemical Ecology.

[6]  M. Epton,et al.  Developments in novel breath tests for bacterial and fungal pulmonary infection. , 2012, Current opinion in pulmonary medicine.

[7]  R. Zimmermann,et al.  Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10 , 2012, Beilstein journal of organic chemistry.

[8]  Bart Weetjens,et al.  The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria , 2012, Beilstein journal of organic chemistry.

[9]  A. Bailly,et al.  The modulating effect of bacterial volatiles on plant growth , 2012, Plant signaling & behavior.

[10]  A. Vainstein,et al.  Quorum-sensing quenching by rhizobacterial volatiles. , 2011, Environmental microbiology reports.

[11]  E. Nudler,et al.  H2S: A Universal Defense Against Antibiotics in Bacteria , 2011, Science.

[12]  T. Boller,et al.  Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. , 2011, Environmental microbiology.

[13]  M. Delepierre,et al.  Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria , 2011, Molecular microbiology.

[14]  M. Wei,et al.  Antifungal, Insecticidal and Herbicidal Properties of Volatile Components from Paenibacillus polymyxa Strain BMP-11 , 2011 .

[15]  L. Macías-Rodríguez,et al.  A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro , 2011, Plant and Soil.

[16]  L. Eberl,et al.  Volatile-Mediated Killing of Arabidopsis thaliana by Bacteria Is Mainly Due to Hydrogen Cyanide , 2010, Applied and Environmental Microbiology.

[17]  R. Laing,et al.  2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung , 2010, BMC pulmonary medicine.

[18]  Junbin Huang,et al.  Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa , 2010 .

[19]  J. Collins,et al.  Bacterial charity work leads to population-wide resistance , 2010, Nature.

[20]  Diqiu Yu,et al.  Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran , 2010, The Journal of Microbiology.

[21]  B. Piechulla,et al.  Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana , 2010, Applied Microbiology and Biotechnology.

[22]  Flavourings Flavouring Group Evaluation 8, Revision 1 (FGE.08Rev1): Aliphatic and alicyclic mono-, di-, tri-, and polysulphides with or without additional oxygenated functional groups from chemical groups 20 and 30: FGE.08Rev1 , 2010 .

[23]  V. P. Campos,et al.  Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens , 2010 .

[24]  L. Macías-Rodríguez,et al.  Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission , 2010, Symbiosis.

[25]  Christoph Wittmann,et al.  Pyrazine Biosynthesis in Corynebacterium glutamicum , 2010 .

[26]  B. Piechulla,et al.  Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens , 2010, Plant signaling & behavior.

[27]  S. Khalifa,et al.  Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. , 2010, Organic letters.

[28]  J. Pernthaler,et al.  Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. , 2009, Environmental microbiology.

[29]  E. Leitner,et al.  Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. , 2009, FEMS microbiology ecology.

[30]  B. Piechulla,et al.  The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles , 2008, Plant signaling & behavior.

[31]  Jeroen S. Dickschat,et al.  Bacterial volatiles: the smell of small organisms. , 2007, Natural product reports.

[32]  B. Piechulla,et al.  Rhizobacterial Volatiles Affect the Growth of Fungi and Arabidopsis thaliana , 2007, Applied and Environmental Microbiology.

[33]  Young Cheol Kim,et al.  GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. , 2006, Molecular plant-microbe interactions : MPMI.

[34]  Jeroen S. Dickschat,et al.  The Chafer Pheromone Buibuilactone and Ant Pyrazines are also Produced by Marine Bacteria , 2005, Journal of Chemical Ecology.

[35]  W. Fernando,et al.  Identification and use of potential bacterial organic antifungal volatiles in biocontrol , 2005 .

[36]  Jeroen S. Dickschat,et al.  Volatile Organic Compounds from Arctic Bacteria of the Cytophaga‐Flavobacterium‐Bacteroides Group: A Retrobiosynthetic Approach in Chemotaxonomic Investigations , 2005, Chemistry & biodiversity.

[37]  Joanna B. Goldberg,et al.  The multifarious, multireplicon Burkholderia cepacia complex , 2005, Nature Reviews Microbiology.

[38]  H. Reichenbach,et al.  Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus , 2004 .

[39]  Hongwei Zhou,et al.  AHL-Deficient Mutants of Burkholderia ambifaria BC-F Have Decreased Antifungal Activity , 2003, Current Microbiology.

[40]  M. Farag,et al.  Bacterial volatiles promote growth in Arabidopsis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Young Cheol Kim,et al.  3-methylthiopropanoic acid produced by Enterobacter intermedium 60-2G inhibits fungal growth and weed seedling development. , 2003, The Journal of antibiotics.

[42]  T. Bandosz,et al.  Effect of Surface Characteristics on Adsorption of Methyl Mercaptan on Activated Carbons , 2002 .

[43]  A. Fiore,et al.  Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. , 2002, Environmental microbiology.

[44]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[45]  P. Vandamme,et al.  Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. , 2001, International journal of systematic and evolutionary microbiology.

[46]  P. Vandamme,et al.  Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. , 2001, International journal of systematic and evolutionary microbiology.

[47]  T. Kokubun,et al.  Plant--fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. , 2001, Phytochemistry.

[48]  G. Pessi,et al.  Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[49]  B. Danieli,et al.  Reductive detoxification of the acetophenone skeleton of the carnation phytoanticipin by Fusarium oxysporum f.sp. dianthi , 2000 .

[50]  S. MacQuarrie,et al.  New and More Potent Antifungal Disulfides , 2000 .

[51]  A. Pavlou,et al.  Sniffing out the Truth: Clinical Diagnosis Using the Electronic Nose , 2000, Clinical chemistry and laboratory medicine.

[52]  M. Irie,et al.  A Convenient General Access to α-Sulfenylated Acetophenones and Alkanones , 1989 .

[53]  C. Keel,et al.  Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions , 1989, The EMBO journal.

[54]  M. Lee,et al.  Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle , 1982, Applied and environmental microbiology.

[55]  S. Iwasaki,et al.  Isolation and Structural Elucidation of Phytotoxic Substances Produced by Xanthomonas campestris pv. oryzae (Ishiyama) Dye , 1980 .

[56]  M. Tonelli,et al.  Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. , 2009, Biochemistry.

[57]  Mathias Frederiksen,et al.  Structure–Activity Relationships for Selected Sulfur-Rich Antifungal Compounds , 1999 .

[58]  R. C. Lindsay,et al.  Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide , 1994 .

[59]  R. J. Keuy Identification and Synthesis , 1992 .