An implicit adaptive node‐splitting algorithm to assess the failure mechanism of inelastic elastomeric continua

[1]  A. Thomas,et al.  High-Speed Fracture of Elastomers: Part I , 2000 .

[2]  J P Sethna,et al.  Fracture in mode I using a conserved phase-field model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  P. Sollero,et al.  An Alternative Technique to Evaluate Crack Propagation Path in Hyperelastic Materials , 2012 .

[4]  Michael Kaliske,et al.  Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method , 2009 .

[5]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[6]  Harry Armen,et al.  Elastic-Plastic Analysis of a Propagating Crack under Cyclic Loading , 1974 .

[7]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting , 2001 .

[8]  Christian Miehe,et al.  A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric , 1998 .

[9]  Ercan Gürses,et al.  A robust algorithm for configurational‐force‐driven brittle crack propagation with R‐adaptive mesh alignment , 2007 .

[10]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[11]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[12]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[13]  M. Kaliske,et al.  An extended tube-model for rubber elasticity : Statistical-mechanical theory and finite element implementation , 1999 .

[14]  Michael Kaliske,et al.  Evaluation of energy contributions in elasto-plastic fracture: A review of the configurational force approach , 2014 .

[15]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[16]  T. Y. Yang,et al.  Plane stress finite element prediction of mixed-mode rubber fracture and experimental verification , 1990 .

[17]  A. Gent,et al.  Crack velocities in natural rubber , 1982 .

[18]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[19]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[20]  Ercan Gürses,et al.  A computational framework of three-dimensional configurational-force-driven brittle crack propagation , 2009 .

[21]  Serdar Göktepe,et al.  A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity , 2004 .

[22]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[23]  O. Yeoh Some Forms of the Strain Energy Function for Rubber , 1993 .

[24]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[25]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[26]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[27]  Dietmar Gross,et al.  On configurational forces in the context of the finite element method , 2002 .

[28]  A. Thomas,et al.  Rupture of Rubber. III. Determination of Tear Properties , 1955 .

[29]  M. H. Fatt,et al.  Three-dimensional constitutive equations for Styrene Butadiene Rubber at high strain rates , 2008 .

[30]  Christian Miehe,et al.  Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure , 2014 .

[31]  Ted Belytschko,et al.  Cracking node method for dynamic fracture with finite elements , 2009 .

[32]  Michael Kaliske,et al.  Material forces for inelastic models at large strains: application to fracture mechanics , 2007 .

[33]  R. Rivlin,et al.  Rupture of rubber. I. Characteristic energy for tearing , 1953 .

[34]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[35]  Otmar Kolednik,et al.  J-integral and crack driving force in elastic–plastic materials , 2008 .

[36]  Paul Steinmann,et al.  Studies in elastic fracture mechanics based on the material force method , 2003 .

[37]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[38]  Gérard A. Maugin,et al.  Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture , 1992 .

[39]  N. Aït Hocine,et al.  Fracture problems of rubbers: J-integral estimation based upon η factors and an investigation on the strain energy density distribution as a local criterion , 2002 .

[40]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[41]  Huajian Gao,et al.  A material force method for inelastic fracture mechanics , 2005 .

[42]  Fredrik Larsson,et al.  On the role of material dissipation for the crack-driving force , 2010 .

[43]  A. Thomas,et al.  The strength of highly elastic materials , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[44]  Michael Kaliske,et al.  Fracture mechanical behaviour of visco‐elastic materials: application to the so‐called dwell‐effect , 2009 .