MPC-PID control of operator-in-the-loop overhead cranes: A practical approach

In this paper, a velocity control system for industrial overhead cranes based on a Model Predictive Control approach is proposed. The problem of the control of the operator-in-the-loop system is addressed, as the operator drives the system pushing a button while the control algorithm drives the cart reducing the oscillations of the load. An inner velocity control loop is used in order to overcome some of the problems of controlling the system by using directly the torque of the motor as a control variable. Simulations show the effectiveness of the approach, in particular in the presence of friction.

[1]  Jaroslaw Smoczek,et al.  Selected measurement and control techniques : experimental verification on a lab-scaled overhead crane , 2017 .

[2]  He Chen,et al.  An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments , 2018 .

[3]  Andreas Kugi,et al.  Suboptimal model predictive control of a laboratory crane , 2010 .

[4]  Zhou Wu,et al.  Energy Efficiency of Overhead Cranes , 2014 .

[5]  Warren E. Dixon,et al.  Nonlinear coupling control laws for an underactuated overhead crane system , 2003 .

[6]  Xiaohua Xia,et al.  Model predictive control for improving operational efficiency of overhead cranes , 2015 .

[7]  H. Troger,et al.  Time optimal control of overhead cranes with hoisting of the load , 1987, Autom..

[8]  J. Ackermann Parameter space design of robust control systems , 1980 .

[9]  Michael H. Kenison,et al.  Input Shaping Control of Double-Pendulum Bridge Crane Oscillations , 2008 .

[10]  Ning Sun,et al.  Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints , 2014, IEEE Transactions on Industrial Electronics.

[11]  Antonio Visioli,et al.  A dynamic inversion approach for oscillation-free control of overhead cranes , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[12]  Jaroslaw Smoczek,et al.  Comparision of model predictive, input shaping and feedback control for a lab-scaled overhead crane , 2016, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).

[13]  Ozren Bego,et al.  Model predictive control of gantry/bridge crane with anti-sway algorithm , 2015, Journal of Mechanical Science and Technology.

[14]  Ali H. Nayfeh,et al.  Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation , 2005 .

[15]  Pawel Hyla,et al.  The crane control systems: A survey , 2012, 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR).

[16]  Aurelio Piazzi,et al.  Minimum-time system-inversion-based motion planning for residual vibration reduction , 2000 .

[17]  Auwalu M. Abdullahi,et al.  Control strategies for crane systems: A comprehensive review , 2017 .

[18]  William Singhose,et al.  Command shaping for flexible systems: A review of the first 50 years , 2009 .

[19]  Aurelio Piazzi,et al.  Optimal dynamic-inversion-based control of an overhead crane , 2002 .

[20]  Janusz Szpytko,et al.  Soft-constrained predictive control for an overhead crane , 2017 .

[21]  Ho-Hoon Lee,et al.  A New Anti-Swing Control of Overhead Cranes , 1997 .

[22]  Antonio Visioli,et al.  Model Predictive Control for operator-in-the-loop overhead cranes , 2018, 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA).

[23]  Liuping Wang,et al.  Model Predictive Control System Design and Implementation Using MATLAB , 2009 .

[24]  Antonio Visioli,et al.  Simplified input-output inversion control of a double pendulum overhead crane for residual oscillations reduction , 2018, Mechatronics.

[25]  Jan Swevers,et al.  Experimental validation of nonlinear MPC on an overhead crane using automatic code generation , 2012, 2012 American Control Conference (ACC).

[26]  A. Marttinen,et al.  Adaptive Pole Placement Control of a Pilot Crane , 1990 .

[27]  Harald Aschemann,et al.  Fast Nonlinear MPC for an Overhead Travelling Crane , 2011 .

[28]  Antonio Visioli,et al.  Modelling the temperature in joint friction of industrial manipulators , 2019, Robotica.

[29]  Andrey V. Savkin,et al.  A new tracking control approach for 3D overhead crane systems using model predictive control , 2014, 2014 European Control Conference (ECC).

[30]  Arto Marttinen Pole-Placement Control of a Pilot Gantry , 1989, 1989 American Control Conference.

[31]  Jan Swevers,et al.  Experimental validation of time optimal MPC on a flexible motion system , 2011, Proceedings of the 2011 American Control Conference.

[32]  J. M. Virkkunen,et al.  Computer control of a loading bridge , 1988 .

[33]  Seiji Yasunobu,et al.  Automatic train operation system based on predictive fuzzy control , 1988, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[34]  Ahmed Z. Al-Garni,et al.  Optimal control of overhead cranes , 1995 .

[35]  Knut Graichen,et al.  Model predictive control of an overhead crane using constraint substitution , 2013, 2013 American Control Conference.

[36]  He Chen,et al.  A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes , 2016, IEEE/ASME Transactions on Mechatronics.

[37]  Ali H. Nayfeh,et al.  Dynamics and Control of Cranes: A Review , 2003 .