Codes for Optical CDMA

There has been a recent upsurge of interest in applying Code Division Multiple Access (CDMA) techniques to optical networks. Conventional spreading codes for OCDMA, known as optical orthogonal codes (OOC) spread the signal in the time domain only, which often results in the requirement of a large chip rate. By spreading in both time and wavelength using two-dimensional OOCs, the chip rate can be reduced considerably. This paper presents an overview of 1-D and 2-D optical orthogonal codes as well as some new results relating to bounds on code size and code construction.

[1]  Oscar Moreno,et al.  Construction of low density parity check codes from optical orthogonal codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[2]  A.J. Mendez,et al.  Temporal/spatial optical CDMA networks-design, demonstration, and comparison with temporal networks , 1992, IEEE Photonics Technology Letters.

[3]  Guu-chang Yang,et al.  Optical orthogonal codes with unequal auto- and cross-correlation constraints , 1995, IEEE Trans. Inf. Theory.

[4]  Yanxun Chang,et al.  Optimal (4up, 5, 1) optical orthogonal codes , 2004 .

[5]  Yanxun Chang,et al.  Further results on optimal optical orthogonal codes with weight 4 , 2004, Discret. Math..

[6]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[7]  Ananth Selvarajan,et al.  Design of a new family of two-dimensional codes for fiber-optic CDMA networks , 1998 .

[8]  Charles J. Colbourn,et al.  Optimal (n, 4, 2)-OOC of small orders , 2004, Discret. Math..

[9]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[10]  Hirobumi Mizuno,et al.  Optical orthogonal codes obtained from conics on finite projective planes , 2004, Finite Fields Their Appl..

[11]  Guu-chang Yang,et al.  Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA , 2005, IEEE Transactions on Communications.

[12]  Cheng-Yuan Chang,et al.  Multiple-wavelength optical orthogonal codes under prime-sequence permutations , 2004, ISIT.

[13]  Oscar Moreno,et al.  A new family of frequency-hop codes , 2000, IEEE Trans. Commun..

[14]  Charles J. Colbourn,et al.  Recursive constructions for optimal (n,4,2)-OOCs , 2004 .

[15]  Robert M. Gagliardi,et al.  Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA , 2003 .

[16]  László Györfi,et al.  Constructions of binary constant-weight cyclic codes and cyclically permutable codes , 1992, IEEE Trans. Inf. Theory.

[17]  Yin Jianxing,et al.  The combinatorial construction for a class of optimal optical orthogonal codes , 2002 .

[18]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[19]  I. Andonovic,et al.  Massive optical LANs using wavelength hopping/time spreading with increased security , 1996, IEEE Photonics Technology Letters.

[20]  E. Berlekamp,et al.  Extended double-error-correcting binary Goppa codes are cyclic (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[21]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[22]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[23]  Zhen Zhang,et al.  New constructions of optimal cyclically permutable constant weight codes , 1995, IEEE Trans. Inf. Theory.

[24]  O. Moreno,et al.  New constructions for optical orthogonal codes, distinct difference sets and synchronous optical orthogonal codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[25]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[26]  P. Vijay Kumar,et al.  Optical orthogonal codes-New bounds and an optimal construction , 1990, IEEE Trans. Inf. Theory.

[27]  Ryoh Fuji-Hara,et al.  Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..

[28]  P. Vijay Kumar,et al.  Frequency-hopping code sequence designs having large linear span , 1988, IEEE Trans. Inf. Theory.

[29]  ChungF. R.K.,et al.  Optical orthogonal codes , 2006 .

[30]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[31]  Tuvi Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1995, IEEE Trans. Inf. Theory.

[32]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[33]  Guu-chang Yang,et al.  Two-dimensional spatial signature patterns , 1996, IEEE Trans. Commun..

[34]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.

[35]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[36]  Guu-chang Yang,et al.  Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks , 1997, IEEE Trans. Commun..

[37]  G. Einarsson Address assignment for a time-frequency-coded, spread-spectrum system , 1980, The Bell System Technical Journal.

[38]  Ken-ichi Kitayama,et al.  Novel spatial spread spectrum based fiber optic CDMA networks for image transmission , 1994, IEEE J. Sel. Areas Commun..

[39]  Solomon W. Golomb,et al.  A new recursive construction for optical orthogonal codes , 2003, IEEE Trans. Inf. Theory.

[40]  J.P. Heritage,et al.  Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications , 2000, Journal of Lightwave Technology.

[41]  Marco Buratti,et al.  A powerful method for constructing difference families and optimal optical orthogonal codes , 1995, Des. Codes Cryptogr..

[42]  Yanxun Chang,et al.  Constructions for optimal optical orthogonal codes , 2003, Discret. Math..

[43]  Abraham Lempel,et al.  Families of sequences with optimal Hamming-correlation properties , 1974, IEEE Trans. Inf. Theory.

[44]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[45]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[46]  I. Andonovic,et al.  Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security , 1996 .

[47]  Leslie A. Rusch,et al.  Passive optical fast frequency-hop CDMA communications system , 1999 .

[48]  P. Vijay Kumar,et al.  New Constructions and Bounds for 2-D Optical Orthogonal Codes , 2004, SETA.

[49]  Cunsheng Ding,et al.  Several Classes of (2m-1, w, 2) Optical Orthogonal Codes , 2003, Discret. Appl. Math..

[50]  J. Bajcsy,et al.  Design and performance of 2-D codes for wavelength-time optical CDMA , 2002, IEEE Photonics Technology Letters.

[51]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[52]  Guu-chang Yang,et al.  Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access , 2004, IEEE Transactions on Communications.