Turbulent Details Simulation for SPH Fluids via Vorticity Refinement

A major issue in Smoothed Particle Hydrodynamics (SPH) approaches is the numerical dissipation during the projection process, especially under coarse discretizations. High-frequency details, such as turbulence and vortices, are smoothed out, leading to unrealistic results. To address this issue, we introduce a Vorticity Refinement (VR) solver for SPH fluids with negligible computational overhead. In this method, the numerical dissipation of the vorticity field is recovered by the difference between the theoretical and the actual vorticity, so as to enhance turbulence details. Instead of solving the Biot-Savart integrals, a stream function, which is easier and more efficient to solve, is used to relate the vorticity field to the velocity field. We obtain turbulence effects of different intensity levels by changing an adjustable parameter. Since the vorticity field is enhanced according to the curl field, our method can not only amplify existing vortices, but also capture additional turbulence. Our VR solver is straightforward to implement and can be easily integrated into existing SPH methods.

[1]  Hongan Wang,et al.  Local Poisson SPH For Viscous Incompressible Fluids , 2012, Comput. Graph. Forum.

[2]  Jan Bender,et al.  Turbulent Micropolar SPH Fluids with Foam , 2019, IEEE Transactions on Visualization and Computer Graphics.

[3]  Chenfanfu Jiang,et al.  An angular momentum conserving affine-particle-in-cell method , 2016, J. Comput. Phys..

[4]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[5]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[6]  Robert Bridson,et al.  A PPPM fast summation method for fluids and beyond , 2014, ACM Trans. Graph..

[7]  N. Chentanez,et al.  Water surface wavelets , 2018, ACM Trans. Graph..

[8]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[9]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[10]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[11]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[12]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[13]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[14]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[15]  Jan Bender,et al.  Divergence-free smoothed particle hydrodynamics , 2015, Symposium on Computer Animation.

[16]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[17]  Yan Peng,et al.  Turbulence Enhancement for SPH Fluids Visualization , 2019, CDVE.

[18]  Heeyoung Kim,et al.  Multilevel vorticity confinement for water turbulence simulation , 2010, The Visual Computer.

[19]  Dan Field Incremental linear interpolation , 1985, TOGS.

[20]  Jan Bender,et al.  Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids , 2020, Eurographics.

[21]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[22]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[23]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[24]  Jing Zhou,et al.  Robust turbulence simulation for particle-based fluids using the Rankine vortex model , 2020, The Visual Computer.

[25]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[26]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[27]  Derek Nowrouzezahrai,et al.  Surface turbulence for particle-based liquid simulations , 2015, ACM Trans. Graph..

[28]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[29]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[30]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[31]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[32]  Ulrich Pinkall,et al.  Hierarchical vorticity skeletons , 2017, Symposium on Computer Animation.

[33]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[34]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[35]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[36]  A. Eringen,et al.  THEORY OF MICROPOLAR FLUIDS , 1966 .

[37]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[38]  Bo Zhu,et al.  Creating and Preserving Vortical Details in SPH Fluid , 2010, Comput. Graph. Forum.

[39]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[40]  Rahul Narain,et al.  A Second-Order Advection-Reflection Solver , 2019, PACMCGIT.

[41]  Ronald Fedkiw,et al.  Mass and momentum conservation for fluid simulation , 2011, SCA '11.

[42]  Robert Bridson,et al.  Fine water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin , 2013, SIGGRAPH '13.

[43]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[44]  Rahul Narain,et al.  An advection-reflection solver for detail-preserving fluid simulation , 2018, ACM Trans. Graph..