Some isoperimetric inequalities with respect to monomial weights

We solve a class of isoperimetric problems on ℝ+2 with respect to monomial weights. Let α and β be real numbers such that 0 ≤ α < β + 1, β ≤ 2α. We show that, among all smooth sets Ω in ℝ+2 with fixed weighted measure ∬Ωyβdxdy, the weighted perimeter ∫∂Ωyα ds achieves its minimum for a smooth set which is symmetric w.r.t. to the y-axis, and is explicitly given. Our results also imply an estimate of a weighted Cheeger constant and a bound for eigenvalues of some nonlinear problems.

[1]  Bernhard Kawohl,et al.  Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .

[2]  Gregory R. Chambers Proof of the Log-Convex Density Conjecture , 2013, Journal of the European Mathematical Society.

[3]  A. Mercaldo,et al.  Weighted isoperimetric inequalities on ℝn and applications to rearrangements , 2008 .

[4]  F. Morgan,et al.  Steiner and Schwarz symmetrization in warped products and fiber bundles with density , 2009, 0911.1938.

[5]  A. Pratelli,et al.  On the isoperimetric problem with double density , 2018, Nonlinear Analysis.

[6]  M. Posteraro,et al.  The isoperimetric problem for a class of non-radial weights and applications , 2018, Journal of Differential Equations.

[7]  The Log-Convex Density Conjecture and vertical surface area in warped products , 2011, 1107.4402.

[8]  Valentina Franceschi,et al.  Symmetric double bubbles in the Grushin plane , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[9]  A. Pratelli,et al.  Existence of Isoperimetric Sets with Densities “Converging from Below” on $${\mathbb {R}}^N$$RN , 2014, 1411.5208.

[10]  Symmetry breaking in a constrained Cheeger type isoperimetric inequality , 2013, 1305.6271.

[11]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[12]  Existence of isoperimetric regions in $${\mathbb{R}^{n}}$$ with density , 2013 .

[13]  B. Opic,et al.  Continuous and compact imbeddings of weighted Sobolev spaces. III , 1988 .

[14]  Thomas Lachand-Robert,et al.  Generalized Cheeger sets related to landslides , 2005 .

[15]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[16]  M. Posteraro,et al.  Some isoperimetric inequalities on RN with respect to weights |x|α , 2017 .

[17]  M. Posteraro,et al.  On weighted isoperimetric inequalities with non-radial densities , 2018, Applicable Analysis.

[18]  M. Novaga,et al.  Total variation and cheeger sets in Gauss space , 2010 .

[19]  Hernán Castro Hardy–Sobolev-type inequalities with monomial weights , 2017 .

[20]  Giorgio Saracco Weighted Cheeger sets are domains of isoperimetry , 2016, manuscripta mathematica.

[21]  M. Miranda,et al.  Some Isoperimetric Problems in Planes with Density , 2009, 0906.1256.

[22]  A Weighted Isoperimetric Inequality in an Orthant , 2014 .

[23]  Emerson Abreu,et al.  On the Existence and Nonexistence of Isoperimetric Inequalities with Different Monomial Weights , 2019, Journal of Fourier Analysis and Applications.

[24]  D. Bucur,et al.  A Faber–Krahn Inequality for the Cheeger Constant of $$N$$N-gons , 2016 .

[25]  R. Monti,et al.  Isoperimetric problem in H-type groups and Grushin spaces , 2014, 1411.5175.

[26]  D. Bucur,et al.  Proof of the honeycomb asymptotics for optimal Cheeger clusters , 2017, Advances in Mathematics.

[27]  Balls Isoperimetric in $\mathbb{R}^n$ with Volume and Perimeter Densities $r^m$ and $r^k$ , 2016, 1610.05830.

[28]  F. Morgan,et al.  Existence of isoperimetric regions in R n with density , 2011, 1111.5160.

[29]  D. Thompson,et al.  Isoperimetric problems in sectors with density , 2010, 1012.0450.

[30]  Frank Morgan,et al.  Manifolds with Density , 2005 .

[31]  Alexander J. Dubbs,et al.  Isoperimetric regions in the plane with density r p , 2010 .

[32]  A weighted isoperimetric inequality and applications to symmetrization. , 1999 .

[33]  Isoperimetric inequality in the Grushin plane , 2004 .

[34]  Frank Morgan,et al.  On the isoperimetric problem in Euclidean space with density , 2006 .

[35]  A. Mercaldo,et al.  On isoperimetric inequalities with respect to infinite measures , 2011, 1108.0863.

[36]  A. Pratelli,et al.  Existence of Isoperimetric Sets with Densities “Converging from Below” on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docum , 2016, The Journal of Geometric Analysis.

[37]  Robin Walters,et al.  THE ISOPERIMETRIC PROBLEM ON PLANES WITH DENSITY , 2008 .

[38]  A. Kolesnikov,et al.  On isoperimetric sets of radially symmetric measures , 2010, 1002.1829.

[39]  E. Parini AN INTRODUCTION TO THE CHEEGER PROBLEM , 2011 .

[40]  Xavier Ros-Oton,et al.  Sobolev and isoperimetric inequalities with monomial weights , 2012, 1210.4487.

[41]  Valentina Franceschi A minimal partition problem with trace constraint in the Grushin plane , 2016, 1607.04295.

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  Gregory R. Chambers,et al.  Isoperimetric Regions in Rn with Density rp , 2015, 1504.01720.

[44]  Xavier Ros-Oton,et al.  Euclidean balls solve some isoperimetric problems with nonradial weights , 2012, 1210.1788.

[45]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[46]  V. Maz'ya,et al.  A Collection of Sharp Dilation Invariant Integral Inequalities for Differentiable Functions , 2009 .

[47]  Sharp estimates for solutions to a certain type of singular elliptic boundary value problems in two dimensions , 1981 .

[48]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .