Implementation of the virtual element method for coupled thermo-elasticity in Abaqus

In this paper, we employ the virtual element method for the numerical solution of linear thermo-elastic problems in two dimensions. The framework is implemented within the commercial software Abaqus using its user element feature. The implementation details of the virtual element method in Abaqus-Matlab software framework are described. The corresponding details on the input data format, which forms the core of the analysis, are given. Both linear and quadratic elements are used within the virtual element framework. A few benchmark problems from linear thermo-elasticity are solved to validate the implementation.

[1]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[2]  Alexander A. Pasko,et al.  Polygonal-functional hybrids for computer animation and games , 2009, SIGGRAPH '09.

[3]  George Papazafeiropoulos,et al.  Abaqus2Matlab: A suitable tool for finite element post-processing , 2017, Adv. Eng. Softw..

[4]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[5]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[6]  Sundararajan Natarajan,et al.  A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra , 2017 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[9]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[10]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[11]  A. Arockiarajan,et al.  Micromechanical modelling of switching phenomena in polycrystalline piezoceramics: application of a polygonal finite element approach , 2011 .

[12]  Lorenzo Mascotto,et al.  Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.

[13]  Stefano Berrone,et al.  The Virtual Element Method for large scale Discrete Fracture Network simulations: fracture‐independent mesh generation , 2015 .

[14]  Sundararajan Natarajan,et al.  Construction of high‐order complete scaled boundary shape functions over arbitrary polygons with bubble functions , 2016 .

[15]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[16]  B. M. Fulk MATH , 1992 .

[17]  Oliver J. Sutton,et al.  The virtual element method in 50 lines of MATLAB , 2016, Numerical Algorithms.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[20]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[21]  Gianmarco Manzini,et al.  A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation , 2014, J. Comput. Phys..

[22]  Glaucio H. Paulino,et al.  Checkerboard-Free Topology Optimization Using Polygonal Finite Elements , 2010 .

[23]  Amir R. Khoei,et al.  A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .

[24]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[25]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[26]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[27]  Chandrajit L. Bajaj,et al.  Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..

[28]  Xuhai Tang,et al.  A novel virtual node method for polygonal elements , 2009 .

[29]  G. Manzini The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. , 2012 .

[30]  Peter Wriggers,et al.  Efficient virtual element formulations for compressible and incompressible finite deformations , 2017 .

[31]  Franco Dassi,et al.  Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions , 2018 .

[32]  K. Y. Sze,et al.  Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics , 2005 .

[33]  Anna Stankiewicz,et al.  Discontinuous Galerkin method with arbitrary polygonal finite elements , 2016 .