Multi-scale optimization for process systems engineering

Abstract Efficient nonlinear programming (NLP) algorithms and modeling platforms have led to powerful process optimization strategies. Nevertheless, these algorithms are challenged by recent evolution and deployment of multi-scale models (such as molecular dynamics and complex fluid flow) that apply over broad time and length scales. Integrated optimization of these models requires accurate and efficient reduced models (RMs). This study develops a rigorous multi-scale optimization framework that substitutes RMs for complex original detailed models (ODMs) and guarantees convergence to the original optimization problem. Based on trust region concepts this framework leads to three related NLP algorithms for RM-based optimization. The first follows the classical gradient-based trust-region method, the second avoids gradient calculations from the ODM, and the third avoids frequent recourse to ODM evaluations, using the concept of ϵ-exact RMs. We illustrate these algorithms with small examples and discuss RM-based optimization case studies that demonstrate their performance and effectiveness.

[1]  E. Zafiriou,et al.  Model reduction for optimization of rapid thermal chemical vapor deposition systems , 1998 .

[2]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[3]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[4]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[5]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[6]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[7]  Zhendong Luo,et al.  Reduced-Order Modeling of the Upper Tropical Pacific Ocean Model using Proper Orthogonal Decomposition , 2006, Comput. Math. Appl..

[8]  Wolfgang Marquardt,et al.  A Projection Approach for Optimization of Distributed Parameter Systems without Gradients , 2009 .

[9]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization - III. Nucleation, growth and aggregation of particles , 1997 .

[10]  Katya Scheinberg,et al.  Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points , 2009, SIAM J. Optim..

[11]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[12]  Costas Kiparissides,et al.  Prediction of the Bivariate Molecular Weight‐Long Chain Branching Distribution in High‐Pressure Low‐Density Polyethylene Autoclaves , 2007 .

[13]  Daniel Sarabia,et al.  Handling Infeasibilities in Dual Modifier-Adaptation Methodology for Real-Time Optimization , 2012 .

[14]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[15]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[16]  Stephen E. Zitney,et al.  Optimization of IGCC processes with reduced order CFD models , 2011, Comput. Chem. Eng..

[17]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[18]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[19]  Raphael T. Hafkta,et al.  Comparing error estimation measures for polynomial and kriging approximation of noise-free functions , 2009 .

[20]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[21]  J. J. Walsh,et al.  Improved chemical process simulation using local thermodynamic approximations , 1979 .

[22]  Jeff Moehlis,et al.  Models for Turbulent Plane Couette Flow Using the Proper Orthogonal Decomposition: Minimal Flow Unit , 2001 .

[23]  Lorenz T. Biegler,et al.  Multi-scale Optimization for Advanced Energy Processes , 2012 .

[24]  Lorenz T. Biegler,et al.  Modeling and optimization of a seeded suspension polymerization process , 2010 .

[25]  Alexander W. Dowling,et al.  Large‐scale optimization strategies for pressure swing adsorption cycle synthesis , 2012 .

[26]  T. Yuan,et al.  A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition , 2005, Comput. Chem. Eng..

[27]  L. Biegler,et al.  Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization , 2009 .

[28]  Christine A. Shoemaker,et al.  ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions , 2008, SIAM J. Sci. Comput..

[29]  Marco Fahl,et al.  Reduced Order Modelling Approaches to PDE-Constrained Optimization Based on Proper Orthogonal Decomposition , 2003 .

[30]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[31]  Lorenz T. Biegler,et al.  Tracking the necessary conditions of optimality with changing set of active constraints using a barrier-penalty function , 2008, Comput. Chem. Eng..

[32]  J. Lumley Coherent Structures in Turbulence , 1981 .

[33]  Ignacio E. Grossmann,et al.  A note on approximation techniques used for process optimization , 1985 .

[34]  Alison J. Burnham,et al.  Frameworks for latent variable multivariate regression , 1996 .

[35]  Panagiotis D. Christofides,et al.  Optimization of transport-reaction processes using nonlinear model reduction , 2000 .

[36]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[37]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[38]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[39]  J. van den Berg,et al.  Model reduction for dynamic real-time optimization of chemical processes , 2005 .

[40]  Lorenz T. Biegler,et al.  Kinetic Modeling of Semi‐Interpenetrating Polymer Network (SIPN) Process ‐ A Comprehensive Study on the Case of Polyethylene/Polystyrene Semi‐I IPN , 2011 .

[41]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[42]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[43]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[44]  P. Roberts,et al.  Convergence and optimality of modified two-step algorithm for integrated system optimization and parameter estimation , 1987 .

[45]  Lorenz T. Biegler,et al.  A trust-region framework for constrained optimization using reduced order modeling , 2013 .

[46]  L. Biegler,et al.  Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling , 2009 .

[47]  M. E. Leesley,et al.  The dynamic approximation method of handling vapor-liquid equilibrium data in computer calculations for chemical processes , 1977 .

[48]  Dominique Bonvin,et al.  Comparison of Six Implicit Real-Time Optimization Schemes , 2012 .

[49]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[50]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[51]  Piotr Tatjewski,et al.  Iterative Algorithms For Multilayer Optimizing Control , 2005 .

[52]  Lorenz T. Biegler,et al.  The Holistic Strategy in Multi-Scale Modeling , 2011 .

[53]  Karen Willcox,et al.  Goal-oriented, model-constrained optimization for reduction of large-scale systems , 2007, J. Comput. Phys..

[54]  J. Peter,et al.  Comparison of surrogate models for turbomachinery design , 2008 .

[55]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[56]  M. Zako,et al.  Structural optimization using Kriging approximation , 2003 .

[57]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[58]  Edgar Franklin Davis,et al.  Modeling and optimization of process engineering problems containing black-box systems and noise. , 2011 .

[59]  Karen Willcox,et al.  Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives , 2012 .

[60]  A. Morris,et al.  Artificial neural networks : studies in process modelling and control : Process operation and control , 1994 .

[61]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[62]  Weijie Lin,et al.  Modeling and Optimization of a Semi-Interpenetrating Polymer Network Process , 2011 .

[63]  Sebastian Engell,et al.  Iterative set-point optimization of batch chromatography , 2005, Comput. Chem. Eng..

[64]  Constantinos Theodoropoulos,et al.  Order reduction for nonlinear dynamic models of distributed reacting systems , 2000 .

[65]  Thomas E. Marlin,et al.  Model adequacy requirements for optimizing plant operations , 1994 .

[66]  Michael S. Eldred,et al.  IMPLEMENTATION OF A TRUST REGION MODEL MANAGEMENT STRATEGY IN THE DAKOTA OPTIMIZATION TOOLKIT , 2000 .

[67]  Wolfgang Marquardt,et al.  A grey-box modeling approach for the reduction of nonlinear systems , 2008 .

[68]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[69]  J. F. Boston,et al.  A radically different formulation and solution of the single-stage flash problem , 1978 .

[70]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[71]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .