Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions

[1]  K. Handa,et al.  Carbohydrate to carbohydrate interaction in development process and cancer progression , 2012, Glycoconjugate Journal.

[2]  Krishna Kumar,et al.  Model system for cell adhesion mediated by weak carbohydrate-carbohydrate interactions. , 2012, Journal of the American Chemical Society.

[3]  V. Zhdanov,et al.  Interaction of single viruslike particles with vesicles containing glycosphingolipids. , 2011, Physical review letters.

[4]  Emmanuel Defaÿ,et al.  The Thermodynamic Approach , 2011 .

[5]  B. Kasemo,et al.  Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip? , 2011 .

[6]  F. Höök,et al.  Kinetics of ligand binding to membrane receptors from equilibrium fluctuation analysis of single binding events. , 2011, Journal of the American Chemical Society.

[7]  U. Seifert,et al.  Switching from Ultraweak to Strong Adhesion , 2011, Advanced materials.

[8]  D. Lingwood,et al.  Cholesterol modulates glycolipid conformation and receptor activity. , 2011, Nature chemical biology.

[9]  B. Kasemo,et al.  Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides. , 2010, The Analyst.

[10]  Gustaf E. Rydell,et al.  QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. , 2009, Glycobiology.

[11]  Vladimir P. Zhdanov,et al.  Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging , 2009, Nucleic acids research.

[12]  B. Kasemo,et al.  Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  Paulo F F Almeida,et al.  Thermodynamics of lipid interactions in complex bilayers. , 2009, Biochimica et biophysica acta.

[14]  Fredrik Höök,et al.  A method improving the accuracy of fluorescence recovery after photobleaching analysis. , 2008, Biophysical journal.

[15]  B. Kasemo,et al.  Real-time QCM-D monitoring of electrostatically driven lipid transfer between two lipid bilayer membranes. , 2008, The journal of physical chemistry. B.

[16]  Marcus Textor,et al.  Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. , 2008, Analytical chemistry.

[17]  S. Hakomori,et al.  Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. , 2008, Biochimica et biophysica acta.

[18]  R. Marie,et al.  Single-molecule detection and mismatch discrimination of unlabeled DNA targets. , 2008, Nano letters.

[19]  M. Longo,et al.  Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol. , 2007, Biophysical journal.

[20]  U. Seifert,et al.  Vesicles as a model for controlled (de-)adhesion of cells: a thermodynamic approach. , 2007, Soft matter.

[21]  F. Sanz,et al.  Effect of pH and ionic strength on phospholipid nanomechanics and on deposition process onto hydrophilic surfaces measured by AFM , 2006 .

[22]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[23]  Zhenyuan Zhu,et al.  The natural LewisX-bearing lipids promote membrane adhesion: influence of ceramide on carbohydrate-carbohydrate recognition. , 2005, Angewandte Chemie.

[24]  Kinetics of ligand binding to a cluster of membrane-associated receptors , 2005, European Biophysics Journal.

[25]  M. Burger,et al.  Carbohydrate-carbohydrate interactions in cell recognition. , 2004, Current opinion in structural biology.

[26]  V. A. Raghunathan,et al.  Spontaneously formed monodisperse biomimetic unilamellar vesicles: the effect of charge, dilution, and time. , 2004, Biophysical journal.

[27]  S. Hakomori,et al.  Further studies on cell adhesion based on Lex-Lex interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Lex expression , 1994, Glycoconjugate Journal.

[28]  Jesus M. de la Fuente,et al.  Understanding carbohydrate-carbohydrate Interactions by means of glyconanotechnology , 2004, Glycoconjugate Journal.

[29]  F. Pincet,et al.  Specific and non specific interactions involving LeX determinant quantified by lipid vesicle micromanipulation , 2004, Glycoconjugate Journal.

[30]  In Situ Peptide-Modified Supported Lipid Bilayers for Controlled Cell Attachment , 2003 .

[31]  G. Lindblom,et al.  Influence of Cholesterol and Water Content on Phospholipid Lateral Diffusion in Bilayers , 2003 .

[32]  B. Kasemo,et al.  Cell adhesion on supported lipid bilayers. , 2003, Journal of biomedical materials research. Part A.

[33]  J. Silvius,et al.  Role of cholesterol in lipid raft formation: lessons from lipid model systems. , 2003, Biochimica et biophysica acta.

[34]  R. Schmidt,et al.  Carbohydrate−Carbohydrate Recognition Between Lewis X Blood Group Antigens, Mediated by Calcium Ions , 2002 .

[35]  J. Rojo,et al.  Carbohydrate-Carbohydrate Interactions in Biological and Model Systems , 2002 .

[36]  S. Penadés,et al.  A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. , 2002, Angewandte Chemie.

[37]  O. Zschörnig,et al.  The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. , 2002, Chemistry and physics of lipids.

[38]  Fredrik Höök,et al.  Protein adsorption on supported phospholipid bilayers. , 2002, Journal of colloid and interface science.

[39]  J. M. de la Fuente,et al.  Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy. , 2001, Angewandte Chemie.

[40]  F. Pincet,et al.  Ultraweak sugar-sugar interactions for transient cell adhesion. , 2001, Biophysical journal.

[41]  R. Schmidt,et al.  Calcium‐Dependent Carbohydrate–Carbohydrate Recognition between LewisX Blood Group Antigens , 2000 .

[42]  R. Schmidt,et al.  Carbohydrate-Carbohydrate Recognition between LewisX Glycoconjugates. , 1999, Angewandte Chemie.

[43]  H. Galla,et al.  Specific binding of peanut agglutinin to GM1-doped solid supported lipid bilayers investigated by shear wave resonator measurements , 1996, European Biophysics Journal.

[44]  N. Bovin CARBOHYDRATE-CARBOHYDRATE INTERACTIONS : A REVIEW , 1996 .

[45]  G. Siuzdak,et al.  Evidence of calcium(2+)-dependent carbohydrate association through ion spray mass spectrometry , 1993 .

[46]  K. Handa,et al.  Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. , 1992, The Journal of biological chemistry.

[47]  S. Normark,et al.  Saccharide orientation at the cell surface affects glycolipid receptor function. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Fenderson,et al.  Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. , 1989, The Journal of biological chemistry.

[49]  L. J. Lis,et al.  Ca2+ induced phase separations in phospholipid mixtures. , 1986, Chemistry and physics of lipids.

[50]  M. Bally,et al.  Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. , 1985, Biochimica et biophysica acta.

[51]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[52]  S. Hakomori,et al.  A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective , 1984, The Journal of experimental medicine.

[53]  E. L. Smith,et al.  Lewis blood group fucolipids and their isomers from human and canine intestine. , 1982, The Journal of biological chemistry.

[54]  K. Karlsson,et al.  Molecular characterization of cell surface antigens of fetal tissue. Detailed analysis of glycosphingolipids of meconium of a human O Le(a--b+) secretor. , 1981, The Journal of biological chemistry.