Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization

We have designed, fabricated, and tested two-dimensional (2-D) slab photonic crystal semiconductor lasers at communication wavelengths. Wavelength-size microresonators defined on the 2-D slab photonic crystal have been effective in photon confinement and functioned well as ultra-small lasers by optical pumping. The photonic crystal laser structures that we have tested have shown large quality factors and low thresholds.

[1]  Far-field emission narrowing effect of microdisk lasers , 1998 .

[2]  Dong-Jae Shin,et al.  Far- and near-field investigations on the lasing modes in two-dimensional photonic crystal slab lasers , 2002 .

[3]  Steven G. Johnson,et al.  Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap , 2000 .

[4]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[5]  J. Joannopoulos,et al.  Theoretical investigation of fabrication‐related disorder on the properties of photonic crystals , 1995 .

[6]  Masaya Notomi,et al.  Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps , 2001 .

[7]  Yong-Hee Lee,et al.  Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm , 2001 .

[8]  Philippe Regreny,et al.  InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 [micro sign]m , 2001 .

[9]  John D. Joannopoulos,et al.  Lasing mechanism in two-dimensional photonic crystal lasers , 1999 .

[10]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[11]  Yong-Hee Lee,et al.  Conditions of single guided mode in two-dimensional triangular photonic crystal slab waveguides , 2000 .

[12]  Umar Mohideen,et al.  Threshold characteristics of semiconductor microdisk lasers , 1993 .

[13]  K Ohtaka,et al.  Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[14]  Amnon Yariv,et al.  Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab , 2000 .

[15]  Henryk Temkin,et al.  Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications , 2001 .

[16]  Eli Yablonovitch,et al.  Surface Recombination Measurements on III-V Candidate Materials for Nanostructure Light-Emitting Diodes , 2000 .

[17]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[18]  K. Sakoda,et al.  Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[19]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[20]  O. Painter,et al.  Lithographic tuning of a two-dimensional photonic crystal laser array , 2000, IEEE Photonics Technology Letters.

[21]  H. Ryu,et al.  Nondegenerate monopole mode of the single-defect two-dimensional triangular photonic band gap cavity , 2001, CLEO 2001.

[22]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[23]  K. Sakoda,et al.  Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate. , 2001, Optics letters.

[24]  Thomas F. Krauss,et al.  Photonic crystals in the optical regime — past, present and future , 1999 .

[25]  A. Scherer,et al.  Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization , 1991 .

[26]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[27]  Kazuaki Sakoda,et al.  Dispersion relation and optical transmittance of a hexagonal photonic crystal slab , 2001 .

[28]  R. Grundbacher,et al.  Characterization of chemically assisted ion beam etching of InP , 1994 .

[29]  Yong-Hee Lee,et al.  Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition , 1998 .

[30]  Goro Sasaki,et al.  Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure , 1999 .

[31]  J. Joannopoulos,et al.  High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals , 1997 .

[32]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[33]  A. Scherer,et al.  Surface plasmon enhanced light-emitting diode , 2000, IEEE Journal of Quantum Electronics.

[34]  Yong-Hee Lee,et al.  Enhancement of light extraction from two-dimensional photonic crystal slab structures , 2002 .

[35]  D. Deppe,et al.  Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors , 1996, IEEE Photonics Technology Letters.

[36]  Shunji Nojima,et al.  Optical-gain enhancement in two-dimensional active photonic crystals , 2001 .

[37]  Masayuki Fujita,et al.  Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor , 1999 .

[38]  Henri Benisty,et al.  Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate , 2000 .

[39]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[40]  Amnon Yariv,et al.  Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities , 1999 .

[41]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[42]  Yong-Seok Choi,et al.  Two-dimensional photonic crystal hexagonal waveguide ring laser , 2002 .

[43]  Po-Tsung Lee,et al.  Room temperature operation of VCSEL-pumped photonic crystal lasers , 2001, LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242).

[44]  S. Noda,et al.  Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design , 2001, Science.

[45]  Amnon Yariv,et al.  InGaAsP Photonic Band Gap Crystal Membrane Microresonators , 1998 .

[46]  Toshihiko Baba,et al.  Observation of light propagation in photonic crystal optical waveguides with bends , 1999 .

[47]  Y.H. Lee,et al.  Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm , 2000, IEEE Photonics Technology Letters.

[48]  Amnon Yariv,et al.  Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities , 1998 .

[49]  Steven G. Johnson,et al.  Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap , 2001 .

[50]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[51]  Axel Scherer,et al.  Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP , 1999 .

[52]  Amnon Yariv,et al.  Photonic bandgap disk laser , 1999 .

[53]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Steven G. Johnson,et al.  Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity , 1998 .

[55]  S. Noda,et al.  Waveguides and waveguide bends in two-dimensional photonic crystal slabs , 2000 .

[56]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[57]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[58]  J. Joannopoulos,et al.  Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency. , 1996, Physical review. B, Condensed matter.

[59]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[60]  Hui Cao,et al.  Optically pumped InAs quantum dot microdisk lasers , 2000 .

[61]  Eli Yablonovitch,et al.  Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals , 1999 .

[62]  Yong-Hee Lee,et al.  Nondegenerate monopole-mode two-dimensional photonic band gap laser , 2001 .

[63]  John E. Bowers,et al.  GaAs to InP wafer fusion , 1995 .

[64]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[65]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[66]  Steven G. Johnson,et al.  Linear waveguides in photonic-crystal slabs , 2000 .

[67]  A. F. J. Levi,et al.  Room temperature operation of submicrometre radius disk laser , 1993 .

[68]  Dong Hoon Jang,et al.  Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 /spl mu/m , 2000, QELS 2000.

[69]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[70]  Yong-Hee Lee,et al.  Spontaneous emission rate of an electric dipole in a general microcavity , 1999 .

[71]  Weidong Zhou,et al.  Characteristics of a photonic bandgap single defect microcavity electroluminescent device , 2001 .

[72]  H. Ryu,et al.  Effect of size nonuniformities on the band gap of two-dimensional photonic crystals , 1999 .

[73]  P. Lalanne,et al.  Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion , 2001 .

[74]  N. Susa,et al.  Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers , 2001 .

[75]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[76]  I. Y. Han,et al.  Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures , 2001 .

[77]  Volker Wittwer,et al.  A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure , 2000 .

[78]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[79]  Yong-Hee Lee,et al.  Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode , 2002 .

[80]  R. Ushigome,et al.  Large spontaneous emission factor of 0.1 in a microdisk injection laser , 2001, IEEE Photonics Technology Letters.

[81]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[82]  Dong Hoon Jang,et al.  Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm , 2000 .

[83]  Steven G. Johnson,et al.  Guided modes in photonic crystal slabs , 1999 .

[84]  J. Joannopoulos,et al.  Accurate theoretical analysis of photonic band-gap materials. , 1993, Physical review. B, Condensed matter.