A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures

Abstract Structural optimization using gradient-based methods is a powerful design technique that is well suited for the design of high-performance structures. However, the ever-increasing complexity of finite-element models and design formulations results in a bottleneck in the computation of the gradients required for the design optimization. Furthermore, in light of current high-performance computing trends, any methods intended to address this bottleneck must efficiently utilize parallel computing resources. Therefore, there is a need for solution and gradient evaluation methods that scale well with the number of design variables, constraints, and processors. We address this need by developing an integrated parallel finite-element analysis tool for gradient-based design optimization that is designed to use specialized parallel solution methods to solve large-scale high-fidelity structural optimization problems with thousands of design variables, millions of state variables, and hundreds of load cases. We describe the most relevant details of the parallel algorithms used within the tool. We present consistent constraint formulations and aggregation techniques for both material failure and buckling constraints. To demonstrate both the solution and functional accuracy, we compare our results to an exact solution of a pressure-loaded cylinder made with either isotropic or orthotropic material. To demonstrate the parallel solution and gradient evaluation performance, we perform a structural analysis and gradient evaluation for a large transport aircraft wing with over 5.44 million unknowns. The results show near-ideal scalability of the structural solution and gradient computation with the number of design variables, constraints, and processors, which makes this framework well suited for large-scale high-fidelity structural design optimization.

[1]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[2]  Alexander G Iosilevich,et al.  An inf-sup test for shell finite elements , 2000 .

[3]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[4]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[5]  Serge Abrate,et al.  Optimal design of laminated plates and shells , 1994 .

[6]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[7]  Joaquim R. R. A. Martins,et al.  A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints , 2013 .

[8]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part VII: Shell intersections with -DOF finite element formulations , 1993 .

[9]  Erik Lund,et al.  Optimization strategies for discrete multi-material stiffness optimization , 2011 .

[10]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[11]  R. Haftka Simultaneous analysis and design , 1985 .

[12]  Kai A. James,et al.  Structural and Multidisciplinary Optimization Manuscript No. Stress-constrained Topology Optimization with Design- Dependent Loading , 2022 .

[13]  S. L. Padula,et al.  Parallel implementation of large-scale structural optimization , 1998 .

[14]  Manolis Papadrakakis,et al.  Large scale structural optimization: Computational methods and optimization algorithms , 2001 .

[15]  Raphael T. Haftka,et al.  Maximization of buckling loads of composite panels using flexural lamination parameters , 2004 .

[16]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[17]  Erik Lund,et al.  Discrete material optimization of general composite shell structures , 2005 .

[18]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[19]  J. Petersson,et al.  Large-scale topology optimization in 3D using parallel computing , 2001 .

[20]  Richard Butler,et al.  Optimization of composite stiffened panels subject to compression and lateral pressure using a bi-level approach , 2008 .

[21]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[22]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[23]  Raphael T. Haftka,et al.  Two-level composite wing structural optimization using response surfaces , 2000 .

[24]  Raphael T. Haftka,et al.  Recent developments in structural sensitivity analysis , 1989 .

[25]  J. C. Simo,et al.  A drill rotation formulation for geometrically exact shells , 1992 .

[26]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[27]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[28]  BirosGeorge,et al.  Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part II , 2005 .

[29]  Justín Murín,et al.  On Drilling Degrees of Freedom , 2011 .

[30]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[31]  J. L. Walsh,et al.  Efficient structural optimization for multiple load cases using adjoint sensitivities , 2001 .

[32]  Erik Lund,et al.  Material interpolation schemes for unified topology and multi-material optimization , 2011 .

[33]  Joaquim R. R. A. Martins,et al.  A homogenization-based theory for anisotropic beams with accurate through-section stress and strain prediction , 2012 .

[34]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[35]  James Demmel,et al.  ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[36]  Raphael T. Haftka,et al.  Structural optimization complexity: what has Moore’s law done for us? , 2004 .

[37]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[38]  J. T. Pereira,et al.  Topology optimization of continuum structures with material failure constraints , 2004 .

[39]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[40]  Tim Schmitz,et al.  Mechanics Of Composite Materials , 2016 .

[41]  C. Q. Liu,et al.  Sensitivity analysis of discrete structural systems , 1995 .

[42]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .

[43]  F. Navarrina,et al.  Topology optimization of continuum structures with local and global stress constraints , 2009 .

[44]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[45]  William C. Schnobrich,et al.  Degenerated isoparametric finite elements using explicit integration , 1986 .

[46]  Akira Todoroki,et al.  Permutation genetic algorithm for stacking sequence design of composite laminates , 2000 .

[47]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[48]  Cleve Ashcraft,et al.  SPOOLES: An Object-Oriented Sparse Matrix Library , 1999, PPSC.

[49]  Joaquim R. R. A. Martins,et al.  Parallel Solution Methods for Aerostructural Analysis and Design Optimization , 2010 .

[50]  Isaac Elishakoff,et al.  Controversy Associated With the So-Called “Follower Forces”: Critical Overview , 2005 .

[51]  Raphael T. Haftka,et al.  Single-level composite wing optimization based on flexural lamination parameters , 2004 .

[52]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[53]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[54]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[55]  Manolis Papadrakakis,et al.  Parallel computational strategies for structural optimization , 2003 .

[56]  Joaquim R. R. A. Martins,et al.  Structural topology optimization with design-dependent pressure loads , 2012 .

[57]  Joaquim R. R. A. Martins,et al.  Structural and Multidisciplinary Optimization Manuscript No. Pyopt: a Python-based Object-oriented Framework for Nonlinear Constrained Optimization , 2022 .

[58]  Joaquim R. R. A. Martins,et al.  Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration , 2012 .

[59]  Joaquim R. R. A. Martins,et al.  An Adjoint-based Derivative Evaluation Method for Time-dependent Aeroelastic Optimization of Flexible Aircraft , 2013 .

[60]  M. Friswell,et al.  Optimization of anisotropic composite panels with T-shaped stiffeners including transverse shear effects and out-of-plane loading , 2008 .

[61]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[62]  G. N. Vanderplaats,et al.  Large Scale Structural Optimization , 1995 .

[63]  Christine M. Anderson-Cook,et al.  Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness , 2004 .

[64]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[65]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[66]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[67]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .