Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty

The reliability of computer predictions of physical events depends on several factors: the mathematical model of the event, the numerical approximation of the model, and the random nature of data characterizing the model. This paper addresses the mathematical theories, algorithms, and results aimed at estimating and controlling modeling error, numerical approximation error, and error due to randomness in material coefficients and loads. A posteriori error estimates are derived and applications to problems in solid mechanics are presented.