The Scheimpflug lidar method

The recent several years we developed the Scheimpflug lidar method. We combined an invention from the 19th century with modern optoelectronics such as diode lasers and CMOS array from the 21st century. The approach exceeds expectations of background suppression, sensitivity and resolution beyond known from time-of-flight lidars. We accomplished multiband elastic atmospheric lidars for resolving single particles and aerosol plumes from 405 nm to 1550 nm. We pursued hyperspectral differential absorption lidar for molecular species. We demonstrated a simple method of inelastic hyperspectral lidar for profiling aquatic environments and vegetation structure. Not least, we have developed polarimetric Scheimpflug lidar with multi-kHz sampling rates for remote modulation spectroscopy and classification of aerofauna. All these advances are thanks to the Scheimpflug principle. Here we give a review of how far we have come and shed light on the limitations and opportunities for future directions. In particular, we show how the biosphere can be resolved with unsurpassed resolution in space and time, and share our expectation on how this can revolutionize ecological analysis and management in relation to agricultural pests, disease vectors and pollinator problematics.

[1]  Exploitation of Multi-Band Lidar for the Classification of Free-Flying Migratory Birds : A Pilot Study over Athens, Greece , 2016 .

[2]  Nicolas-Alexander Tatlas,et al.  Automated Surveillance of Fruit Flies , 2017, Sensors.

[3]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[4]  L. Hansson,et al.  Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test , 2018 .

[5]  M. Brydegaard,et al.  Observations of movement dynamics of flying insects using high resolution lidar , 2016, Scientific Reports.

[6]  M. Brydegaard Towards Quantitative Optical Cross Sections in Entomological Laser Radar – Potential of Temporal and Spherical Parameterizations for Identifying Atmospheric Fauna , 2015, PloS one.

[7]  L. Mei,et al.  Mobile lidar system for environmental monitoring , 2017 .

[8]  Christopher Melton,et al.  Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines. , 2006, Applied optics.

[9]  Nathan Seldomridge,et al.  Polarization lidar measurements of honey bees in flight for locating land mines. , 2005, Optics express.

[10]  S. Spuler Micro-Pulse Differential Absorption Lidar (DIAL) Network for Measuring the Spatial and Temporal Distribution of Water Vapor in the Lower Atmosphere , 2017 .

[11]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[12]  Mikkel Brydegaard,et al.  Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system. , 2015, Optics express.

[13]  Melanie Voges,et al.  Development and Application of Laser-Based Diagnostics for Combustion Research at DLR Cologne , 2008 .

[14]  Esko Herrala,et al.  Imaging spectrometer for process industry applications , 1994, Other Conferences.

[15]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[16]  M. Brydegaard,et al.  Effective Parameterization of Laser Radar Observations of Atmospheric Fauna , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Fabrizio Innocenti,et al.  Infrared differential absorption Lidar (DIAL) measurements of hydrocarbon emissions. , 2011, Journal of environmental monitoring : JEM.

[18]  T. Fukuchi,et al.  Laser Remote Sensing , 2005 .

[19]  Applications of KHZ-CW Lidar in Ecological Entomology , 2016 .

[20]  Giovanna Cecchi,et al.  High-spectral-resolution lidar experiments for the monitoring of water column temperature , 1997, Remote Sensing.

[21]  G. Avdikos Powerful Raman Lidar systems for atmospheric analysis and high-energy physics experiments , 2015 .

[22]  Sune Svanberg,et al.  Mercury emissions from chlor-alkali plants measured by lidar techniques , 2005 .

[23]  O. Reitebuch,et al.  The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument , 2009 .

[24]  William P. Hooper,et al.  Lidar detected spike returns , 2010 .

[25]  S. Åkesson,et al.  Short-Wave infrared atmospheric scheimpflug lidar , 2018 .

[26]  Mikkel Brydegaard,et al.  Continuous‐wave differential absorption lidar , 2015 .

[28]  Daniel P. W. Ellis,et al.  Exploring Low Cost Laser Sensors to Identify Flying Insect Species , 2015, J. Intell. Robotic Syst..

[29]  Didier Tanré,et al.  Aerosol Remote Sensing , 2013 .

[30]  Yang Yang,et al.  Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique. , 2017, Optics express.

[31]  Erich G. Rohwer,et al.  Probing insect backscatter cross section and melanization using kHz optical remote detection system , 2017 .

[32]  Joseph A. Shaw,et al.  Development of a wing-beat-modulation scanning lidar system for insect studies , 2017, Optical Engineering + Applications.

[33]  Alexandros Papayannis,et al.  Exploitation of an atmospheric lidar network node in single-shot mode for the classification of aerofauna , 2017 .

[34]  Manfred H. Jericho,et al.  Development and deployment of a point‐source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m , 2013 .

[35]  Sune Svanberg,et al.  Super Resolution Laser Radar with Blinking Atmospheric Particles - Application to Interacting Flying Insects , 2014 .

[36]  Erich G. Rohwer,et al.  Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system , 2014 .

[37]  Sune Svanberg,et al.  Inelastic hyperspectral lidar for profiling aquatic ecosystems , 2016 .

[38]  V. Drozdowska Seasonal and spatial variability of surface seawater fluorescence properties in the Baltic and Nordic Seas: results of lidar experiments , 2007 .

[39]  Susan Fae Ann Bender,et al.  Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology , 2003 .

[40]  A.J.C. Berkhout,et al.  Lidar Measurements of Industrial Benzene Emissions , 2016 .

[41]  D. Lemon,et al.  Multiple-frequency moored sonar for continuous observations of zooplankton and fish , 2012, 2012 Oceans.

[42]  Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring , 2016 .

[43]  Aubrey Moore,et al.  Automated Identification of Optically Sensed Aphid (Homoptera: Aphidae) Wingbeat Waveforms , 2002 .

[44]  V. Drake,et al.  Distinguishing target classes in observations from vertically pointing entomological radars , 2016 .

[45]  Gottfried Mandlburger,et al.  Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences , 2016 .

[46]  L. Mona,et al.  Lidar Measurements for Desert Dust Characterization: An Overview , 2012 .

[47]  Don R. Reynolds,et al.  Radar Entomology: Observing Insect Flight and Migration , 2013 .

[48]  J. Barnes,et al.  Atmospheric aerosol profiling with a bistatic imaging lidar system. , 2007, Applied optics.

[49]  Sarah Theiss,et al.  Elastic Lidar Theory Practice And Analysis Methods , 2016 .

[50]  Therese Johansson,et al.  Can Airborne Laser Scanning (ALS) and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest? , 2015, Remote. Sens..

[51]  James H. Churnside,et al.  Review of profiling oceanographic lidar , 2013 .

[52]  E. Baum,et al.  On The Validation of LES Applied to Internal Combustion Engine Flows: Part 1: Comprehensive Experimental Database , 2014 .

[53]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[54]  M. Aldén,et al.  Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar. , 2012, Optics express.

[55]  R. Colombo,et al.  Sun‐induced fluorescence – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant , 2015, Global change biology.

[56]  Atmospheric aerosol measurements by employing a polarization scheimpflug lidar system , 2018 .

[57]  Mikael Ljungholm Inelastic LIDAR for Monitoring Aquatic Fauna , 2016 .

[58]  Konstantinos Fysarakis,et al.  Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps , 2015, PloS one.

[59]  S. Åkesson,et al.  Daily Evolution of the Insect Biomass Spectrum in an Agricultural Landscape Accessed with Lidar , 2016 .

[60]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .