Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate

[1]  A. Stahl Iodine to Calcium Ratios in Marine Carbonates as an Indicator of Oxygen Levels , 2018 .

[2]  A. Knoll,et al.  Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrate minimum , 2017 .

[3]  R. Reid,et al.  Investigating controls on boron isotope ratios in shallow marine carbonates , 2017 .

[4]  C. Lowery,et al.  Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy , 2017 .

[5]  R. Large,et al.  Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring Billion , 2016 .

[6]  D. Erwin,et al.  Earth’s oxygen cycle and the evolution of animal life , 2016, Proceedings of the National Academy of Sciences.

[7]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[8]  Xiaoying Shi,et al.  Extremely low oxygen concentration in mid-Proterozoic shallow seawaters , 2016 .

[9]  C. Hillenbrand,et al.  Oxygen depletion recorded in upper waters of the glacial Southern Ocean , 2016, Nature Communications.

[10]  Yan-Yan Zhao,et al.  Seeking a geochemical identifier for authigenic carbonate , 2016, Nature Communications.

[11]  J. Hope,et al.  Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth , 2016, Geobiology.

[12]  Linda C. Kah,et al.  Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates , 2016 .

[13]  Linda C. Kah,et al.  Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates , 2016 .

[14]  J. Grotzinger,et al.  Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion , 2015 .

[15]  J. Grotzinger,et al.  Marine organic matter cycling during the Ediacaran Shuram excursion , 2015 .

[16]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[17]  A. Maloof,et al.  Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion , 2015 .

[18]  J. Higgins,et al.  Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments , 2015 .

[19]  A. Ridgwell,et al.  Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian‐Turonian OAE 2 , 2015 .

[20]  Linda C. Kah,et al.  Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships , 2015 .

[21]  A. Eisenhauer,et al.  I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as proxy for redox conditions , 2014 .

[22]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[23]  Ellen Thomas,et al.  I/Ca evidence for upper ocean deoxygenation during the PETM , 2014 .

[24]  T. Jickells,et al.  The distribution of iodide at the sea surface. , 2014, Environmental science. Processes & impacts.

[25]  A. Bekker,et al.  An iodine record of Paleoproterozoic surface ocean oxygenation , 2014 .

[26]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[27]  D. Canfield,et al.  Oxygen requirements of the earliest animals , 2014, Proceedings of the National Academy of Sciences.

[28]  A. Knoll Paleobiological perspectives on early eukaryotic evolution. , 2014, Cold Spring Harbor perspectives in biology.

[29]  A. Anbar,et al.  Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy , 2013 .

[30]  D. Schrag,et al.  Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada , 2013 .

[31]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[32]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[33]  A. Bekker,et al.  Proterozoic ocean redox and biogeochemical stasis , 2013, Proceedings of the National Academy of Sciences.

[34]  D. Schrag,et al.  Authigenic Carbonate and the History of the Global Carbon Cycle , 2013, Science.

[35]  A. J. Kaufman,et al.  Local δ34S variability in ̃580Ma carbonates of northwestern Mexico and the Neoproterozoic marine sulfate reservoir , 2013 .

[36]  L. Kump,et al.  Shallow water redox conditions from the Permian–Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China , 2012 .

[37]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[38]  A. Knoll,et al.  Late Ediacaran redox stability and metazoan evolution , 2012 .

[39]  U. Fehn,et al.  Tracing Crustal Fluids: Applications of Natural 129I and 36Cl , 2012 .

[40]  A. Bekker,et al.  Oxygen overshoot and recovery during the early Paleoproterozoic , 2012 .

[41]  F. Corsetti,et al.  Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate , 2012 .

[42]  U. Fehn Tracing Crustal Fluids: Applications of Natural , 2012 .

[43]  P. Swart,et al.  Neoproterozoic carbonates require a marine origin? A Pliocene- Pleistocene comparison , 2012 .

[44]  R. Drysdale,et al.  Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes , 2011 .

[45]  R. Rickaby,et al.  Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events , 2010 .

[46]  L. Derry A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly , 2010 .

[47]  P. Swart,et al.  Late Cenozoic Dolomites of the Bahamas: Metastable Analogues for the Genesis of Ancient Platform Dolomites , 2009 .

[48]  N. Sheldon,et al.  Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift , 2009 .

[49]  M. Kennedy,et al.  Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean , 2008 .

[50]  T. Lyons,et al.  Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy , 2008 .

[51]  Peter A. Cawood,et al.  Late Neoproterozoic and Early Cambrian palaeogeography: models and problems , 2008 .

[52]  A. J. Kaufman,et al.  The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA , 2007 .

[53]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[54]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[55]  J. Hayes,et al.  Dynamics of the Neoproterozoic carbon cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Luther,et al.  Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ , 2002 .

[57]  R. Ginsburg,et al.  Pliocene to Pleistocene Deposition History of the Upper Platform Margin , 2001 .

[58]  R. Ginsburg,et al.  Sea-Level-Driven Sedimentation Patterns on the Slope and Margin , 2001 .

[59]  P. Swart,et al.  The Origin of Dolomites in Tertiary Sediments from the Margin of Great Bahama Bank , 2000 .

[60]  L. Kah Depositional δ18O Signatures in Proterozoic Dolostones: Constraints on Seawater Chemistry and Early Diagenesis , 2000 .

[61]  Y. Muramatsu,et al.  The distribution of iodine in the earth's crust , 1998 .

[62]  K. Nealson,et al.  Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4 , 1997 .

[63]  K. Bruland,et al.  The response of trace element redox couples to suboxic conditions in the water column , 1997 .

[64]  R. Maliva,et al.  Meteoric-like fabrics forming in marine waters: Implications for the use of petrography to identify diagenetic environments , 1995 .

[65]  J. Cullen,et al.  Redox Chemistry of Iodine in Seawater: Frontier Molecular Orbital Theory Considerations , 1995 .

[66]  M. McClain,et al.  The Hydrogeochemistry of Early Meteoric Diagenesis in a Holocene deposit of Biogenic Carbonates , 1994 .

[67]  A. Knoll,et al.  Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). , 1991, Precambrian research.

[68]  H. Kennedy,et al.  Iodine diagenesis in non-pelagic deep-sea sediments , 1987 .

[69]  D. Jablonski,et al.  Onshore-Offshore Patterns in the Evolution of Phanerozoic Shelf Communities , 1983, Science.

[70]  M. Tucker Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites , 1982 .

[71]  P. Liss,et al.  Redox species in a reducing fjord: equilibrium and kinetic considerations☆ , 1979 .

[72]  P. Brewer,et al.  The marine chemistry of iodine in anoxic basins , 1977 .