Scale Relativity and Fractal Space-Time: Theory and Applications
暂无分享,去创建一个
[1] J. Cresson. Scale relativity theory for one-dimensional non-differentiable manifolds , 2002 .
[2] L. Nottale. The Theory of Scale Relativity: Non‐Differentiable Geometry and Fractal Space‐Time , 2004 .
[3] G. Jumarie. Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics , 2006 .
[4] L'arbre de la vie a-t-il une structure fractale ? , 1999 .
[5] D. Sornette,et al. Stock Market Crashes, Precursors and Replicas , 1995, cond-mat/9510036.
[6] L. Nottale. Relativité d'échelle et morphogenèse , 2001 .
[7] T. Aushev,et al. Radiative B meson decays into Kπγ and Kππγ final states , 2002 .
[8] Gravitational structure formation in scale relativity , 2003, astro-ph/0310036.
[9] Jacky Cresson,et al. Fractional differential equations and the Schrödinger equation , 2005, Appl. Math. Comput..
[10] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[11] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[12] L. Nottale. Scale-relativity and quantization of planet obliquities , 1998 .
[13] Incompleteness of trajectory-based interpretations of quantum mechanics , 2004, quant-ph/0406054.
[14] Didier Sornette,et al. Scale Invariance and Beyond , 1997 .
[15] J. Lévy-Leblond. One more derivation of the Lorentz transformation , 1976 .
[16] Divergence d'échelle et différentiabilité , 2000 .
[17] Jacky Cresson,et al. Quantum derivatives and the Schrödinger equation , 2004 .
[18] M. S. E. Nasche. Multi-dimensional Cantor Sets in Classical and Quantum Mechanics , 1992 .
[19] G. Jumarie. SCHRÖDINGER EQUATION FOR QUANTUM FRACTAL SPACE–TIME OF ORDER n VIA THE COMPLEX-VALUED FRACTIONAL BROWNIAN MOTION , 2001 .
[20] L. Nottale. Scale relativity and quantization of the planetary system around the pulsar PSR B1257 + 12 , 1998 .
[21] R. Cash,et al. Développement humain et loi log-périodique , 2002 .
[22] L. Nottale. Scale relativity and non-differentiable fractal space-time , 2001 .
[23] R. Dalitz. Elementary particle theory , 1980, Nature.
[24] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[25] Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.
[26] L. Nottale. RELATIVITÉ, ÊTRE ET NE PAS ÊTRE , 2002 .
[27] Alain Connes,et al. Noncommutative Geometry and Matrix Theory: Compactification on Tori , 1997, hep-th/9711162.
[28] L. Nottale. ASTROPHYSICAL APPLICATIONS OF THE THEORY OF SCALE RELATIVITY , 2006 .
[29] Wang,et al. Comment on "Repeated measurements in stochastic mechanics" , 1993, Physical review. D, Particles and fields.
[30] Scale Relativity : First Steps Toward a Field Theory , 1994 .
[31] L. Nottale,et al. SCALE-RELATIVITY, FRACTAL SPACE-TIME AND GRAVITATIONAL STRUCTURES , 1998 .
[32] M. Berry. Quantum fractals in boxes , 1996 .
[33] G. Schumacher,et al. Scale relativity and quantization of the solar system Orbit quantization of the planet's satellites , 1997 .
[34] Carlos Castro,et al. How the New Scale Relativity Theory resolves some quantum paradoxes , 2000 .
[35] L. Nottale. New formulation of stochastic Mechanics. Application to chaos , 1995 .
[36] I. Khan. The music of life , 1983 .
[37] Peter Hänggi,et al. Is quantum mechanics equivalent to a classical stochastic process , 1979 .
[38] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[39] S. Saar,et al. Time Evolution of the Magnetic Activity Cycle Period. II. Results for an Expanded Stellar Sample , 1999 .
[40] D. Sornette. Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.
[41] Természettudományok. Extrasolar Planets Encyclopaedia , 2010 .
[42] L. Nottale. Scale Relativity: A Fractal Matrix for Organization in Nature , 2007 .
[43] Ke Chen,et al. Applied Mathematics and Computation , 2022 .
[44] C. Auffray,et al. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. , 2008, Progress in biophysics and molecular biology.
[45] Laurent Nottale,et al. THE THEORY OF SCALE RELATIVITY , 1992 .
[46] The Pauli equation in scale relativity , 2006, quant-ph/0609107.
[47] L. Nottale. Origin of Complex and Quaternionic Wavefunctions in Quantum Mechanics: the Scale-Relativistic View , 2008 .
[48] Laurent Nottale,et al. The scale-relativity program , 1999 .
[49] G. Jumarie,et al. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..
[50] L. Nottale,et al. Non-Abelian gauge field theory in scale relativity , 2006, hep-th/0605280.
[51] M. M. Novak,et al. Fractals and Beyond: Complexities in the Sciences , 1998 .
[52] G. Ord. The Schrödinger and Dirac Free Particle Equations without Quantum Mechanics , 1996 .
[53] Rovelli,et al. Knot theory and quantum gravity. , 1988, Physical review letters.
[54] Alessandro Vespignani,et al. Local Rigidity and Self-Organized Criticality for Avalanches , 1995 .
[55] R. Festa,et al. Clues to discretization on the cosmic scale , 1997 .
[56] Laurent Nottale,et al. Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .
[57] Terry Marks-Tarlow,et al. Simultaneity : temporal structures and observer perspectives , 2008 .
[58] Didier Sornette,et al. Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions , 1995 .
[59] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[60] Laurent Nottale,et al. FRACTALS AND THE QUANTUM THEORY OF SPACETIME , 1989 .
[61] The Feynman propagator from a single path. , 2001, Physical review letters.
[62] Franco Selleri,et al. Frontiers of Fundamental Physics , 1984 .
[63] Denis Noble,et al. Modelling the heart: insights, failures and progress. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.
[64] H. Kröger. Fractal geometry in quantum mechanics, field theory and spin systems , 2000 .
[65] L. Nottale,et al. Log-periodic laws applied to geosciences , 2004 .
[66] A. Provost,et al. Scaling rules in rock fracture and possible implications for earthquake prediction , 1982, Nature.
[67] D. Noble. Music of life : biology beyond the genome , 2006 .
[68] I. Adachi,et al. Improved measurements of branching fractions and CP partial rate asymmetries for B-->omegaK and B-->omegapi , 2006 .
[69] D. McKeon,et al. Time Reversal in Stochastic Processes and the Dirac Equation II , 1992 .
[70] Steven N. Shore. Magnetic Fields in Astrophysics , 1992 .
[71] L. Nottale,et al. On the Fractal Structure of Evolutionary Trees , 2002 .
[72] Guy Jumarie,et al. The Minkowski's space-time is consistent with differential geometry of fractional order , 2007 .
[73] Phase transition in gauge theories and the Planck scale physics , 2001, hep-th/0110127.
[74] Edmund J. Crampin,et al. Multiscale computational modelling of the heart , 2004, Acta Numerica.
[76] Rovelli,et al. Spin networks and quantum gravity. , 1995, Physical review. D, Particles and fields.
[77] R. Nichol,et al. Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.
[78] C. Froeschlé,et al. Chaos and diffusion in Hamiltonian systems , 1995 .
[79] Jacky Cresson,et al. Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.
[80] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[81] J. L. S. Luk. Mémoire d'habilitation à diriger des recherches , 2000 .
[82] D. Sokoloff,et al. Magnetic Fields in Astrophysics , 1958 .
[83] Rama Cont,et al. Scale Invariance and Beyond , 1997 .
[84] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[85] L. Nottale,et al. Scale-relativity and quantization of exoplanet orbital semi-major axes , 2000 .
[86] String theory, scale relativity and the generalized uncertainty principle , 1995, hep-th/9512044.
[87] Jacky Cresson. Scale calculus and the Schrödinger equation , 2003 .
[88] L. Nottale. ASTRONOMY AND ASTROPHYSICS Letter to the Editor Scale-relativity and quantization of extra-solar planetary systems , 1996 .
[89] L. Nottale. Scale relativity and gauge invariance , 2001 .
[90] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .
[91] G. Kane,et al. Elementary particle theory , 1970 .
[92] M. Peterson. Analogy between thermodynamics and mechanics , 1979 .
[93] L. F. Abbott,et al. Dimension of a Quantum-Mechanical Path. , 1981 .
[94] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[95] Laurent Nottale,et al. Derivation of the postulates of quantum mechanics from the first principles of scale relativity , 2007, 0711.2418.
[96] Charles Auffray,et al. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics. , 2008, Progress in biophysics and molecular biology.
[97] Edward J. Wollack,et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.
[98] J. Pissondes. Quadratic relativistic invariant and metric form in quantum mechanics , 1999 .
[99] G. Amelino-Camelia. DOUBLY-SPECIAL RELATIVITY: FIRST RESULTS AND KEY OPEN PROBLEMS , 2002, gr-qc/0210063.
[100] L. Nottale,et al. Fractals and nonstandard analysis , 1984 .
[101] S. Gould,et al. Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.
[102] Daniel M. Dubois. Computing anticipatory systems : CASYS'03 - sixth international conference : Liège, Belgium 11-16 August 2003 , 2004 .
[103] L. Nottale. Scale-relativistic cosmology , 2003 .
[104] Alberto Carpinteri,et al. Power Scaling Laws and Dimensional Transitions in Solid Mechanics , 1996 .
[105] Brian Fields,et al. Big-Bang nucleosynthesis (2006 Particle Data Group mini-review) , 2006, astro-ph/0601514.
[106] E. Weibel,et al. Fractals in Biology and Medicine , 1994 .
[107] H. Nicolai. What are string theories , 1987 .
[108] Laurent Nottale,et al. Scale relativity and fractal space-time: applications to quantum physics, cosmology and chaotic systems. , 1996 .
[109] Daniel M. Dubois,et al. Computing Anticipatory Systems , 1998 .
[110] I. Prigogine,et al. Quantum mechanics, diffusion and chaotic fractals , 1995 .
[111] R. Hermann,et al. Numerical simulation of a quantum particle in a box , 1997 .