THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

Kepler-93b is a 1.478 ± 0.019 R⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 Mand a radius of 0.919 ± 0.011 R� . Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M⊕. The corresponding high density of 6.88 ± 1.18 g cm −3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 M⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M⊕ planets.

[1]  Steven Soter,et al.  Q in the solar system , 1966 .

[2]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[3]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[4]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[5]  Thomas J. Ahrens,et al.  Global earth physics a handbook of physical constants , 1995 .

[6]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[7]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[8]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[9]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[10]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[11]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[12]  M. Kuchner Volatile-rich Earth-Mass Planets in the Habitable Zone , 2003, astro-ph/0303186.

[13]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[14]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[15]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[16]  Abundances of Na, Mg and Al in stars with giant planets , 2005, astro-ph/0504157.

[17]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[18]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[19]  Abundances of refractory elements in the atmospheres of stars with extrasolar planets , 2005, astro-ph/0512219.

[20]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[21]  D. Hamilton,et al.  Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina , 2008 .

[22]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[23]  D. Sasselov,et al.  TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS , 2009, 0912.1907.

[24]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[25]  Lars Hernquist,et al.  MINIMUM RADII OF SUPER-EARTHS: CONSTRAINTS FROM GIANT IMPACTS , 2010, 1003.0451.

[26]  J. Fortney,et al.  USING STAR SPOTS TO MEASURE THE SPIN–ORBIT ALIGNMENT OF TRANSITING PLANETS , 2011, 1107.2106.

[27]  P. Bodenheimer,et al.  FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES , 2011, 1106.2807.

[28]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[29]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[30]  Martin C. Stumpe,et al.  The Derivation, Properties, and Value of Kepler’s Combined Differential Photometric Precision , 2012, 1208.0595.

[31]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[32]  Nicolas Buchschacher,et al.  Harps-N: the new planet hunter at TNG , 2012, Other Conferences.

[33]  U. Maryland,et al.  Improved precision on the radius of the nearby super-Earth 55 Cnc e , 2011, 1110.4783.

[34]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[35]  J. Eastman,et al.  MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH , 2013 .

[36]  Cambridge,et al.  A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses , 2013, 1301.0818.

[37]  Andrew Szentgyorgyi,et al.  An Earth-sized planet with an Earth-like density , 2013, Nature.

[38]  Howard Isaacson,et al.  ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES , 2013, 1303.0227.

[39]  Howard Isaacson,et al.  A rocky composition for an Earth-sized exoplanet , 2013, Nature.

[40]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[41]  A. Wolfgang,et al.  HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU , 2014, 1409.2982.

[42]  Marseille,et al.  Revisiting the transits of CoRoT-7b at a lower activity level , 2014, 1407.8099.

[43]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[44]  Jason T. Wright,et al.  The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis , 2014, 1402.6343.

[45]  David M. Kipping,et al.  THE HUNT FOR EXOMOONS WITH KEPLER (HEK). IV. A SEARCH FOR MOONS AROUND EIGHT M DWARFS , 2014, 1401.1210.

[46]  D. Ciardi,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. II. PLANETS ARE LESS COMMON IN MULTIPLE-STAR SYSTEMS WITH SEPARATIONS SMALLER THAN 1500 AU , 2014, 1407.3344.

[47]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[48]  David Charbonneau,et al.  KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST CASE FOR A NEW SPITZER OBSERVING MODE , 2014, 1405.3659.

[49]  Jaymie M. Matthews,et al.  CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454 , 2014, 1412.5674.

[50]  Andrew Szentgyorgyi,et al.  THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET , 2014, 1405.7881.

[51]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.