NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal “Place Fields”

[1]  J. D. Green,et al.  Hippocampal electrical activity in arousal. , 1954, Journal of neurophysiology.

[2]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[3]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[4]  H. Teitelbaum,et al.  Relationship between hippocampal theta activity and running speed in the rat. , 1975, Journal of comparative and physiological psychology.

[5]  C. H. Vanderwolf,et al.  Hippocampal Rhythmic Slow Activity and Neocortical Low-Voltage Fast Activity: Relations to Behavior , 1975 .

[6]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[7]  C. Barnes Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. , 1979, Journal of comparative and physiological psychology.

[8]  B. Clineschmidt,et al.  Anticonvulsant activity of (+)‐5‐methyl‐10, 11‐dihydro‐5H‐dibenzo[a, d]cyclohepten‐5, 10‐imine (MK‐801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties , 1982 .

[9]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[10]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[11]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[12]  J. B. Ranck,et al.  Spatial firing patterns of hippocampal complex-spike cells in a fixed environment , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[14]  C. Pavlides,et al.  Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of θ-rhythm , 1988, Brain Research.

[15]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[16]  S. Iversen,et al.  The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. , 1989, European journal of pharmacology.

[17]  K. Appenteng,et al.  The morphology of the axons and axon collaterals of rat jaw-elevator motoneurones , 1989, Brain Research.

[18]  F. Gage,et al.  Age-related impairments in spatial memory are independent of those in sensorimotor skills , 1989, Neurobiology of Aging.

[19]  Keiko Sato,et al.  Effects of competitive and noncompetitive NMDA receptor antagonists on kindling and LTP , 1991, Pharmacology Biochemistry and Behavior.

[20]  R. Muller,et al.  The hippocampus as a cognitive graph (abridged version) , 1991, Hippocampus.

[21]  G. Rose,et al.  Hippocampal plasticity induced by primed burst, but not long‐term potentiation, stimulation is impaired in area CA1 of aged fischer 344 rats , 1993, Hippocampus.

[22]  D. Turner,et al.  Age-related alterations in potentiation in the CA1 region in F344 rats , 1993, Neurobiology of Aging.

[23]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[24]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[25]  Michael Recce,et al.  The representation of space in the rat hippocampus , 1994 .

[26]  R. Morris,et al.  Distinct components of spatial learning revealed by prior training and NMDA receptor blockade , 1995, Nature.

[27]  G N Akoev,et al.  Electroreceptors: involvement of excitatory amino acids in synaptic transmission. , 1995, Comparative biochemistry and physiology. Part A, Physiology.

[28]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[29]  D. Cain,et al.  Spatial learning without NMDA receptor-dependent long-term potentiation , 1995, Nature.

[30]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[31]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[33]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[34]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[35]  RU Muller,et al.  The hippocampus as a cognitive graph , 1996, The Journal of general physiology.

[36]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[37]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[38]  W E Skaggs,et al.  The Effect of Aging on Experience-Dependent Plasticity of Hippocampal Place Cells , 1997, The Journal of Neuroscience.

[39]  B. McNaughton,et al.  Multistability of cognitive maps in the hippocampus of old rats , 1997, Nature.

[40]  B. McNaughton,et al.  Role of temporal summation in age‐related long‐term potentiation–induction deficits , 1997, Hippocampus.

[41]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[43]  Bruce L. McNaughton,et al.  Non-Linear Dynamics Generating Theta Phase Precession in Hippocampal Closed Circuit and Generation of Episodic Memory , 1998, ICONIP.

[44]  J. Olney,et al.  Clonidine potentiates the neuropathic pain-relieving action of MK-801 while preventing its neurotoxic and hyperactivity side effects , 1998, Brain Research.

[45]  C Kentros,et al.  Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. , 1998, Science.

[46]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[47]  G Buzsáki,et al.  Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel , 1999, The European journal of neuroscience.

[48]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[49]  M. Wayner,et al.  Air righting role of the NMDA receptor channel and hippocampal LTP , 2000, Physiology & Behavior.

[50]  Bradley V. Clineschmidt,et al.  Central sympathomimetic activity of (+)‐5‐methyl‐10,11‐dihydro‐5H‐dibenzo [a, d]cyclohepten‐5,10‐imine (MK‐801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties , 2022 .