Survey of Ti-, B-, and Y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region.

We have performed an experimental investigation of Ti-, B(4)C-, B-, and Y-based multilayer mirrors for the soft x-ray¿extreme ultraviolet (XUV) wavelength region between 2.0 and 12.0 nm. Eleven different material pairs were studied: Ti/Ni, Ti/Co, Ti/Cu, Ti/W, B(4)C/Pd, B/Mo, Y/Pd, Y/Ag, Y/Mo, Y/Nb, and Y/C. The multilayers were sputter deposited and were characterized with a number of techniques, including low-angle x-ray diffraction and normal incidence XUV reflectometry. Among the Ti-based multilayers the best results were obtained with Ti/W, with peak reflectances up to 5.2% at 2.79 nm at 61° from normal incidence. The B(4)C/Pd and B/Mo multilayer mirrors had near-normal incidence (5°) peak reflectances of 11.5% at 8.46 nm and 9.4% at 6.67 nm, respectively, whereas a Y/Mo multilayer mirror had a maximum peak reflectance of 25.6% at 11.30 nm at the same angle. The factors limiting the peak reflectance of these different multilayer mirrors are discussed.

[1]  V. V. Kondratenko,et al.  Synthesis and measurement of normal incidence x-ray multilayer mirrors optimized for a photon energy of 390 eV , 1994, Optics & Photonics.

[2]  P. Kearney New Materials for Multilayer Soft X-Ray Optics for Wavelengths Below 124 Angstrom by Sputtering and Molecular Beam Epitaxy. , 1994 .

[3]  First results of microspectroscopy from a scanning photoemission microscope with a submicron probe size , 1993 .

[4]  C. R. Hills,et al.  Structure and performance of Si/Mo multilayer mirrors for the extreme ultraviolet , 1994 .

[5]  Charles M. Falco,et al.  Characterization of Pd-B, Ag-B, and Si-B interfaces , 1992, Optics & Photonics.

[6]  R. S. Rosen,et al.  Fabrication of high‐reflectance Mo–Si multilayer mirrors by planar‐magnetron sputtering , 1991 .

[7]  Natale M. Ceglio,et al.  Applications of microfabrication technology to x‐ray laser cavities , 1988 .

[8]  Pa Buffat,et al.  Development of Ni/Ti multilayer supermirrors for neutron optics , 1994 .

[9]  R S Rosen,et al.  Normal-incidence x-ray mirror for 7 nm. , 1991, Optics letters.

[10]  David L. Windt,et al.  Interface imperfections in metal/Si multilayers , 1992 .

[11]  C. Falco STRUCTURAL AND ELECTRONIC PROPERTIES OF ARTIFICIAL METALLIC SUPERLATTICES , 1984 .

[12]  Zushu Hu,et al.  Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites , 1994 .

[13]  J. Thornton The microstructure of sputter-deposited coatings , 1986 .

[14]  S. Jiang,et al.  An X-ray diffraction study on Cu-Ti metallic multilayers , 1989 .

[15]  Mittemeijer,et al.  Amorphization along interfaces and grain boundaries in polycrystalline multilayers: An x-ray-diffraction study of Ni/Ti multilayers. , 1990, Physical review. B, Condensed matter.

[16]  J. Dobrowolski,et al.  Extreme-ultraviolet Mo/Si multilayer mirrors deposited by radio-frequency-magnetron sputtering. , 1994, Applied optics.

[17]  C. R. Helms,et al.  Annealing behavior of refractory metal multilayers on Si: The Mo/Ti and W/Ti systems , 1988 .

[18]  M. Yamamoto,et al.  Layer-by-layer design method for soft-x-ray multilayers. , 1992, Applied optics.

[19]  N. Ceglio,et al.  Wavelength considerations in soft-x-ray projection lithography. , 1993, Applied optics.

[20]  P. Kearney,et al.  Materials for multilayer x-ray optics at wavelengths below 100 A , 1991 .

[21]  Daniel G. Stearns,et al.  The scattering of x rays from nonideal multilayer structures , 1989 .

[22]  A. Rosenbluth Computer search for layer materials that maximize the reflectivity of X-ray multilayers , 1988 .

[23]  B. Clemens Effect of sputtering pressure on the structure and solid‐state reaction of titanium‐nickel compositionally modulated film , 1987 .

[24]  R Feder,et al.  Potential operating region for ultrasoft x-ray microscopy of biological materials. , 1977, Science.

[25]  R S Rosen,et al.  Multilayer mirror technology for soft-x-ray projection lithography. , 1993, Applied optics.

[26]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .

[27]  N. N. Salashchenko,et al.  Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow-band reflection in the range λ simeq 4.5 nm , 1993 .

[28]  Claude Sella,et al.  Reduction of the Interfacial Diffusion in Ni-Ti Neutron-Optics Multilayers by Carburation of the Ni-Ti Interfaces , 1993 .

[29]  P. L. Perry,et al.  Characterization of Mo/B4C multilayers , 1991 .

[30]  E. Spiller,et al.  Sub-arcsecond observations of the solar X-ray corona , 1990, Nature.

[31]  E. Cotts,et al.  Solid-State Reactions in Multilayer Ni/Ti Thin Film Composites , 1990 .

[32]  Robert Sinclair,et al.  The preparation of cross‐section specimens for transmission electron microscopy , 1984 .

[33]  N. M. Ceglio,et al.  Revolution in x-ray optics. , 1989, Journal of X-ray science and technology.

[34]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[35]  Hiroshi Nagata Nickel/Vanadium and Nickel/Titanium Multilayers for X-Ray Optics , 1990 .

[36]  Martin Richardson,et al.  Imaging of laser-produced plasmas at 44 Å using a multilayer mirror , 1988 .

[37]  V. V. Kondratenko,et al.  Evolution of structure, phase composition and x-ray reflectivity of multilayer mirrors Mo-(B+C) after annealing at 400-1100°C , 1995, Other Conferences.

[38]  D. Cromer,et al.  Relativistic Calculation of Anomalous Scattering Factors for X Rays , 1970 .

[39]  Yoshiaki Horikawa,et al.  Soft x-ray reflectometry with a laser-produced plasma source , 1994 .

[40]  E. B. Saloman,et al.  Peak reflectivity measurements of W/C, Mo/Si, and Mo/B(4)C multilayer mirrors in the 8-190-A range using both Kalpha line and synchrotron radiation. , 1990, Applied optics.

[41]  C. D. England,et al.  Structural and magnetic properties of Ti/Co multilayers , 1990 .

[42]  Louis Hennet,et al.  Three materials soft x-ray mirrors: theory and application , 1991, Optics & Photonics.

[43]  A. Bruson,et al.  Atomic diffusion in sinusoidally modulated CuxTi1−x amorphous multilayers , 1993 .

[44]  A. Bruson,et al.  X-ray diffraction study of amorphization along interfaces in polycrystalline Ni/Ti multilayers , 1992 .

[45]  K M Skulina,et al.  Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet. , 1995, Applied optics.

[46]  N. Ceglio Revolution in x-ray optics. , 1989, Journal of X-ray science and technology.

[47]  Charles M. Falco,et al.  Boron-based multilayers for soft x-ray optics , 1992, Optics & Photonics.

[48]  In situ reflectance measurements of soft-x-ray/extreme-ultraviolet Mo/Y multilayer mirrors. , 1995, Optics letters.