Impact of helpers on colony productivity in a primitively eusocial bee

[1]  J. Meade,et al.  Ecological and demographic correlates of helping behaviour in a cooperatively breeding bird. , 2013, The Journal of animal ecology.

[2]  M. Chapuisat,et al.  Born to be bee, fed to be worker? The caste system of a primitively eusocial insect , 2012, Frontiers in Zoology.

[3]  Seán G. Brady,et al.  Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). , 2012, Molecular phylogenetics and evolution.

[4]  Pat Barclay,et al.  The varying relationship between helping and individual quality , 2012 .

[5]  E. Hasegawa,et al.  A halictid bee with sympatric solitary and eusocial nests offers evidence for Hamilton's rule , 2012, Nature Communications.

[6]  A. Bourke The validity and value of inclusive fitness theory , 2011, Proceedings of the Royal Society B: Biological Sciences.

[7]  J. Field,et al.  Assured fitness returns in a social wasp with no worker caste , 2011, Proceedings of the Royal Society B: Biological Sciences.

[8]  J. Field,et al.  Nest Inheritance Is the Missing Source of Direct Fitness in a Primitively Eusocial Insect , 2011, Science.

[9]  M. Schwarz,et al.  Fitness consequences of ecological constraints and implications for the evolution of sociality in an incipiently social bee , 2011 .

[10]  M. Schwarz,et al.  The evolution of eusociality in allodapine bees: workers began by waiting , 2011, Biology Letters.

[11]  W. Wcislo,et al.  Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae) , 2011, Behavioral Ecology and Sociobiology.

[12]  J. Field,et al.  Cryptic Plasticity Underlies a Major Evolutionary Transition , 2010, Current Biology.

[13]  M. Chapuisat Evolution: Plastic Sociality in a Sweat Bee , 2010, Current Biology.

[14]  S. Sumner,et al.  Reproductive constraints, direct fitness and indirect fitness benefits explain helping behaviour in the primitively eusocial wasp, Polistes canadensis , 2010, Proceedings of the Royal Society B: Biological Sciences.

[15]  M. Chapuisat,et al.  Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae , 2009, Molecular ecology.

[16]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[17]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[18]  S. Higashi,et al.  Degree-day accumulation controlling allopatric and sympatric variations in the sociality of sweat bees, Lasioglossum (Evylaeus) baleicum (Hymenoptera: Halictidae) , 2008, Behavioral Ecology and Sociobiology.

[19]  M. Schwarz,et al.  Strong constraints to independent nesting in a facultatively social bee: quantifying the effects of enemies-at-the-nest , 2008, Insectes Sociaux.

[20]  W. Wcislo,et al.  Survival and productivity benefits to social nesting in the sweat bee Megalopta genalis (Hymenoptera: Halictidae) , 2007, Behavioral Ecology and Sociobiology.

[21]  R. Paxton,et al.  It's good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee , 2005, Molecular ecology.

[22]  T. Wenseleers,et al.  When Resistance Is Useless: Policing and the Evolution of Reproductive Acquiescence in Insect Societies , 2004, The American Naturalist.

[23]  W. Jordan,et al.  Social parasitism by male-producing reproductive workers in a eusocial insect , 2004, Nature.

[24]  E. Tibbetts,et al.  Benefits of foundress associations in the paper wasp Polistes dominulus: increased productivity and survival, but no assurance of fitness returns , 2003 .

[25]  E. Strohm,et al.  Advantages and disadvantages of large colony size in a halictid bee: the queen's perspective , 2003 .

[26]  T. Dunn,et al.  When to bee social: interactions among environmental constraints, incentives, guarding, and relatedness in a facultatively social carpenter bee , 2003 .

[27]  W. Wcislo,et al.  Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae) , 2003, Behavioral Ecology and Sociobiology.

[28]  Melissa L. Thomas,et al.  Colony size affects division of labour in the ponerine ant Rhytidoponera metallica , 2003, Naturwissenschaften.

[29]  K. Hogendoorn,et al.  Benefits of cooperative breeding through increased colony survival in an allodapine bee , 2001, Insectes Sociaux.

[30]  R. Clouse SOME EFFECTS OF GROUP SIZE ON THE OUTPUT OF BEGINNING NESTS OF MISCHOCYTTARUS MEXICANUS (HYMENOPTERA: VESPIDAE) , 2001 .

[31]  J. Field,et al.  Insurance-based advantage to helpers in a tropical hover wasp , 2000, Nature.

[32]  Michel Chapuisat,et al.  Cooperation among Selfish Individuals in Insect Societies , 1999 .

[33]  Bourke Colony size, social complexity and reproductive conflict in social insects , 1999 .

[34]  S. A. Ward,et al.  Mutualistic Benefits Generate an Unequal Distribution of Risky Activities Among Unrelated Group Members , 1998, Naturwissenschaften.

[35]  J. Evans Evolution of social insect colonies: Sex allocation and kin selection: By R.H. Crozier and P. Pamilo Oxford University Press, 1996. £39.50 hbk, £19.95 pbk (viii + 306 pages) ISBN 0 19 854943 1 , 1997 .

[36]  R. Crozier,et al.  Genetic Intrigues. (Book Reviews: Evolution of Social Insect Colonies. Sex Allocation and Kin Selection.) , 1997 .

[37]  W. Wcislo,et al.  Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae) , 1996, Behavioral Ecology and Sociobiology.

[38]  U. Mueller,et al.  A method for estimating the age of bees: Age-dependent wing wear and coloration in the Wool-Carder beeAnthidium manicatum (hymenoptera: Megachilidae) , 1993, Journal of Insect Behavior.

[39]  J. Boomsma,et al.  Colony structure, provisioning and sex allocation in the sweat bee Halictus ligatus (Hymenoptera: Halictidae) , 1993 .

[40]  R. Gadagkar Evolution of eusociality: the advantage of assured fitness returns , 1990 .

[41]  D. Queller The evolution of eusociality: Reproductive head starts of workers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. W. Batra Nesting behavior ofHalictus scabiosæ in Switzerland (Hymenoptera, Halictidæ) , 1966, Insectes Sociaux.

[43]  Charles D. Michener,et al.  Reproductive efficiency in relation to colony size in hymenopterous societies , 1964, Insectes Sociaux.

[44]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[45]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[46]  E. Hasegawa,et al.  Both cooperation and nest position improve larval survival in the sweat bee, Lasioglossum (Evylaeus) baleicum , 2010, Journal of Ethology.

[47]  Tom Wenseleers,et al.  Altruism in insect societies and beyond: voluntary or enforced? , 2008, Trends in ecology & evolution.

[48]  M. Schwarz,et al.  Changing paradigms in insect social evolution: insights from halictine and allodapine bees. , 2007, Annual review of entomology.

[49]  D.,et al.  THE EVOLUTION OF SOCIAL BEHAVIOR , 2002 .

[50]  J. Seger,et al.  Unexpected patterns of parentage and relatedness in a primitively eusocial bee , 1995, Nature.

[51]  J. Pickering,et al.  Cooperative foraging, productivity, and the central limit theorem. , 1991, Proceedings of the National Academy of Sciences of the United States of America.