A Review of Kernel Methods in Remote Sensing Data Analysis

Kernel methods have proven effective in the analysis of images of the Earth acquired by airborne and satellite sensors. Kernel methods provide a consistent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are particularly appropriate for remote sensing data analysis. In fact, kernel methods have improved results of parametric linear methods and neural networks in applications such as natural resource control, detection and monitoring of anthropic infrastructures, agriculture inventorying, disaster prevention and damage assessment, anomaly and target detection, biophysical parameter estimation, band selection, and feature extraction. This chapter provides a survey of applications and recent theoretical developments of kernel methods in the context of remote sensing data analysis. The specific methods developed in the fields of supervised classification, semisupervised classification, target detection, model inversion, and nonlinear feature extraction are revised both theoretically and through experimental (illustrative) examples. The emergent fields of transfer, active, and structured learning, along with efficient parallel implementations of kernel machines, are also revised.

[1]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[2]  Fatos Xhafa Parallel Programming, Models and Applications in Grid and P2P Systems , 2009, Parallel Programming, Models and Applications in Grid and P2P Systems..

[3]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .

[4]  José Luis Rojo-Álvarez,et al.  Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[5]  I. Vasiliniuc Book review of „Remote Sensing and Image Interpretation”, 5th edition (Lillesand M. Thomas, Kiefer W. Ralph, Chipman W. Jonathan) , 2007 .

[6]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[7]  Rama Chellappa,et al.  Kernel fully constrained least squares abundance estimates , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Farid Melgani,et al.  Estimating Biophysical Parameters from Remotely Sensed Imagery with Gaussian Processes , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[10]  Nello Cristianini,et al.  A statistical framework for genomic data fusion , 2004, Bioinform..

[11]  Ping Shi,et al.  Retrieval of oceanic chlorophyll concentration using support vector machines , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[13]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[14]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[16]  S. Franklin,et al.  Geostatistical and texture analysis of airborne-acquired images used in forest classification , 2004 .

[17]  L. Keiner,et al.  Estimating oceanic chlorophyll concentrations with neural networks , 1999 .

[18]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[19]  Lorenzo Bruzzone,et al.  Toward the Automatic Updating of Land-Cover Maps by a Domain-Adaptation SVM Classifier and a Circular Validation Strategy , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Lawrence Carin,et al.  Detection of Unexploded Ordnance via Efficient Semisupervised and Active Learning , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  A-Xing Zhu,et al.  Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Gustavo Camps-Valls,et al.  Structured output SVM for remote sensing image classification , 2009 .

[23]  Xiao‐Hai Yan,et al.  Development and application of a neural network based ocean colour algorithm in coastal waters , 2005 .

[24]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[26]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[27]  A. J. Barret,et al.  Methods of Mathematical Physics, Volume I . R. Courant and D. Hilbert. Interscience Publishers Inc., New York. 550 pp. Index. 75s. net. , 1954, The Journal of the Royal Aeronautical Society.

[28]  Gustavo Camps-Valls,et al.  Efficient Kernel Orthonormalized PLS for Remote Sensing Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Keinosuke Fukunaga,et al.  Effects of Sample Size in Classifier Design , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Lorenzo Bruzzone,et al.  A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps , 2002, IEEE Trans. Geosci. Remote. Sens..

[31]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[32]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem☆ , 2008 .

[33]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[34]  Hung-Lung Allen Huang,et al.  Atmospheric and environmental remote sensing data processing and utilization : an end-to-end system perspective : 4-6 August 2004, Denver, Colorado, USA , 2004 .

[35]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[36]  Joydeep Ghosh,et al.  An Active Learning Approach to Hyperspectral Data Classification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[38]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[39]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[40]  R. Fletcher Practical Methods of Optimization , 1988 .

[41]  Jon Atli Benediktsson,et al.  Evaluation of Kernels for Multiclass Classification of Hyperspectral Remote Sensing Data , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[42]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[43]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[44]  Lorenzo Bruzzone,et al.  A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[46]  Jordi Inglada,et al.  Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features , 2007 .

[47]  S. Wold,et al.  Multivariate Data Analysis in Chemistry , 1984 .

[48]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[49]  Robert I. Damper,et al.  Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification , 2008, IEEE Transactions on Image Processing.

[50]  Gustavo Camps-Valls,et al.  Semisupervised Remote Sensing Image Classification With Cluster Kernels , 2009, IEEE Geoscience and Remote Sensing Letters.

[51]  Gustavo Camps-Valls,et al.  Multisource Composite Kernels for Urban-Image Classification , 2010, IEEE Geoscience and Remote Sensing Letters.

[52]  Bruce R. Kowalski,et al.  Chemometrics, mathematics and statistics in chemistry , 1984 .

[53]  Lorenzo Bruzzone,et al.  Unsupervised retraining of a maximum-likelihood classifier for the analysis of multitemporal remote sensing images , 1999, Remote Sensing.

[54]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[55]  Luis Gómez-Chova,et al.  Semisupervised Image Classification With Laplacian Support Vector Machines , 2008, IEEE Geoscience and Remote Sensing Letters.

[56]  Gustavo Camps-Valls,et al.  Retrieval of oceanic chlorophyll concentration with relevance vector machines , 2006 .

[57]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[58]  William J. Emery,et al.  Active Learning Methods for Remote Sensing Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Luis Gómez-Chova,et al.  Urban monitoring using multi-temporal SAR and multi-spectral data , 2006, Pattern Recognit. Lett..

[60]  J. Anthony Gualtieri,et al.  A Parallel Processing Algorithm for Remote Sensing Classification , 2005 .

[61]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[62]  Marco Diani,et al.  Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks , 2001, IEEE Trans. Geosci. Remote. Sens..

[63]  Qiong Jackson,et al.  An adaptive classifier design for high-dimensional data analysis with a limited training data set , 2001, IEEE Trans. Geosci. Remote. Sens..

[64]  Sankar K. Pal,et al.  Segmentation of multispectral remote sensing images using active support vector machines , 2004, Pattern Recognit. Lett..

[65]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[66]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[67]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Luis Gómez-Chova,et al.  Biophysical Parameter Estimation With a Semisupervised Support Vector Machine , 2009, IEEE Geoscience and Remote Sensing Letters.

[69]  Lorenzo Bruzzone,et al.  Mean Map Kernel Methods for Semisupervised Cloud Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[70]  M. Seeger Learning with labeled and unlabeled dataMatthias , 2001 .

[71]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[72]  Goo Jun,et al.  An Efficient Active Learning Algorithm with Knowledge Transfer for Hyperspectral Data Analysis , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[73]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[74]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[75]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[76]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[77]  Luis Gómez-Chova,et al.  Semi-Supervised Support Vector Biophysical Parameter Estimation , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[78]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[79]  Menghua Wang,et al.  Seawifs Postlaunch Calibration and Validation Analyses , 2013 .

[80]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[81]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[82]  Roberto Furfaro,et al.  A Gaussian Process Approach to Quantifying the Uncertainty of Vegetation Parameters from Remote Sensing Observations , 2006 .

[83]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[84]  Gabriele Moser,et al.  Land Surface Temperature Estimation from Passive Satellite Images using Support Vector Machines , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[85]  Luis Gómez-Chova,et al.  Biophysical parameter estimation with adaptive Gaussian Processes , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[86]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[87]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[88]  Chein-I Chang,et al.  High Performance Computing in Remote Sensing , 2007, HiPC 2007.

[89]  Bernhard Schölkopf,et al.  Introduction to Semi-Supervised Learning , 2006, Semi-Supervised Learning.

[90]  Lorenzo Bruzzone,et al.  A Composite Semisupervised SVM for Classification of Hyperspectral Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[91]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[92]  Jens Nieke,et al.  Cluster versus grid for large-volume hyperspectral image preprocessing , 2004, SPIE Optics + Photonics.

[93]  Giulietta S. Fargion,et al.  Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data , 2003, IEEE Trans. Geosci. Remote. Sens..

[94]  Grégoire Mercier,et al.  Partially Supervised Oil-Slick Detection by SAR Imagery Using Kernel Expansion , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[95]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[96]  Jon Atli Benediktsson,et al.  Gradient Optimization for multiple kernel's parameters in support vector machines classification , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.