Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis
暂无分享,去创建一个
The extensivity error of configuration interaction (CI) is well understood and unlinked diagram corrections must be applied to get reliable results. Besides the well known a posteriori Davidson‐type corrections, several methods attempt to modify the CI equations a priori to obtain nearly extensive results, while retaining the convenience of working in a configuration space. Such unlinked diagram corrections are particularly important for multireference cases for which coupled‐cluster (CC) calculations, which require a many‐body, integral‐based calculation, are more difficult. Several such multireference methods have been presented recently, ranging from the multireference linearized coupled cluster method (MR‐LCCM), averaged coupled pair functional (MR‐ACPF), through various quasidegenerate variational perturbation theory (QD‐VPT), MR‐coupled electron pair method (MR‐CEPA) to size‐consistent, self‐consistent, selected CI [(SC)2SCI]. We analyze all of these methods theoretically and numerically, paying par...
[1] J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .
[2] P. Löwdin. Studies in perturbation theory XIII. Treatment of constants of motion in resolvent method, partitioning technique, and perturbation theory , 1968 .
[3] H. P. Kelly. CORRELATION EFFECTS IN MANY FERMION SYSTEMS. II. LINKED CLUSTERS , 1964 .