A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS (Progress in Variational Problems : Variational Problems Interacting with Probability Theories)

These notes are dedicated to recent global existence and regularity results on the parabolic-elliptic Keller-Segel model in dimension 2, and its generalisation with nonlinear diffusion in higher dimensions, obtained throught a gradient flow approach in the Wassertein metric. These models have a critical mass Mc such that the solutions exist globally in time if the mass is less than Mc and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out.

[1]  C. Patlak Random walk with persistence and external bias , 1953 .

[2]  Adrien Blanchet,et al.  Improved intermediate asymptotics for the heat equation , 2011, Appl. Math. Lett..

[3]  Vincent Calvez,et al.  The parabolic-parabolic Keller-Segel model in R2 , 2008 .

[4]  Yao Yao Asymptotic Behavior for Critical Patlak-Keller-Segel model and an Repulsive-Attractive Aggregation Equation , 2011, 1112.4617.

[5]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[6]  Christian Schmeiser,et al.  The two-dimensional Keller-Segel model after blow-up , 2009 .

[7]  Eric Carlen,et al.  Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model , 2010, 1009.0134.

[8]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[9]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[10]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[11]  Pierre-Henri Chavanis Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R. Khonsari,et al.  The Origins of Concentric Demyelination: Self-Organization in the Human Brain , 2007, PloS one.

[13]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[14]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[15]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[16]  P. Raphaël,et al.  On the stability of critical chemotactic aggregation , 2012, 1209.2517.

[17]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[18]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[19]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[20]  Y. Sugiyama Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems , 2006, Differential and Integral Equations.

[21]  Piotr Biler,et al.  Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis , 2009, Journal of mathematical biology.

[22]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[23]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[24]  Y. Sugiyama Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models , 2007, Advances in Differential Equations.

[25]  Bogdan-Vasile Matioc,et al.  A gradient flow approach to a thin film approximation of the Muskat problem , 2013 .

[26]  J. Dolbeault,et al.  Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane , 2012, 1206.1963.

[27]  Manuel del Pino,et al.  Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions☆ , 2002 .

[28]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[29]  C. Villani Topics in Optimal Transportation , 2003 .

[30]  Alexander Lorz,et al.  Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach , 2012, Journal of Fluid Mechanics.

[31]  Nicolas Meunier,et al.  Analysis of a non local model for spontaneous cell polarisation , 2011, 1105.4429.

[32]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[33]  R. Mannella,et al.  Self-gravitating Brownian particles in two dimensions: the case of N = 2 particles , 2009, 0911.1022.

[34]  Philippe Laurençot,et al.  The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in ℝ d , d ≥ 3 , 2012, 1203.3573.

[35]  B. Perthame Transport Equations in Biology , 2006 .