Thermal analysis of bond layer influence on performance of an all-active vertically coupled, microring resonating laser

Abstract The vertical coupling of active InP based ring resonators and passive feeding waveguides necessitates the use of a waferbonding technology in the fabrication process. The required bond material (BCB) has a low thermal conductivity and will strongly influence the operating temperature and thus the performance of the ring resonator through its insulating effect. A comprehensive thermal analysis of a proposed vertically coupled ring resonator of 50 μm outer radius is undertaken during the design phase to determine the thermal impact of: the design of the wafer bond, the design of the passivation layer and the optical power levels. Thermal abatement strategies for semiconductor lasers are presented.

[1]  Vien Van,et al.  Optical signal processing using nonlinear semiconductor microring resonators , 2002 .

[2]  Andrea Irace,et al.  Measurement of thermal conductivity and diffusivity of single and multilayer membranes , 1999 .

[3]  R. C. Tiberio,et al.  Temperature tuning of microcavity ring and disk resonators at 1.5-/spl mu/m , 1997, Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting.

[4]  M. Hamacher,et al.  MMI-coupled ring resonators in GaInAsP-InP , 2001, IEEE Photonics Technology Letters.

[5]  Simulation of Heterojunction Bipolar Transistors in Two Dimensions , 1989 .

[6]  F G Johnson,et al.  Vertically coupled GaInAsP--InP microring resonators. , 2001, Optics letters.

[7]  Chung-En Zah,et al.  Thermal management strategies for high power semiconductor pump lasers , 2006, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[8]  S. Rapp Long-Wavelength Vertical-Cavity Lasers Based on InP/GaInAsP Bragg Reflectors , 1999 .

[9]  S. Ho,et al.  InGaAsP thin-film microdisk resonators fabricated by polymer wafer bonding for wavelength add-drop filters , 2000 .

[10]  P.-T. Ho,et al.  All-optical nonlinear switching in GaAs-AlGaAs microring resonators , 2002, IEEE Photonics Technology Letters.

[11]  Ute Troppenz,et al.  Active ring resonators based on GaInAsP/InP , 2003, Photonics Fabrication Europe.

[12]  Xingsheng Liu,et al.  Thermal management strategies for high power semiconductor pump lasers , 2004, IEEE Transactions on Components and Packaging Technologies.

[13]  Costas P. Grigoropoulos,et al.  Thermal conductivity and diffusivity of free‐standing silicon nitride thin films , 1995 .

[14]  Seng-Tiong Ho,et al.  Single-mode lasing operation using a microring resonator as a wavelength selector , 2002 .

[15]  F. Brotzen,et al.  The effective transverse thermal conductivity of amorphous Si3N4 thin films , 1994 .

[16]  Charles W. Tu,et al.  A novel material for long-wavelength lasers: InNAsP , 1998 .

[17]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[18]  Brent E. Little,et al.  TOWARD VERY LARGE-SCALE INTEGRATED PHOTONICS , 2000 .

[19]  Michael Hamacher,et al.  All-active InGaAsP/InP ring cavities for widespread functionalities in the wavelength domain , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[20]  S. Kanakaraju,et al.  Laterally coupled InP-based single-mode microracetrack notch filter , 2003, IEEE Photonics Technology Letters.

[21]  Peter Enoksson,et al.  Low-temperature wafer-level transfer bonding , 2001 .

[22]  Ute Troppenz,et al.  InP-based high index waveguides on GaInAsP/InP for applications in active/passive ring resonators , 2002, SPIE OPTO.