Ceramic Nanoparticle Synthesis at Lower Temperatures for LTCC and MMIC Technologies

Ni1−xMgxFe2O4 (x = 0.2–0.8) nanoparticles are prepared by hydrothermal synthesis followed by microwave processing. The effect of microwave processing in reducing the required heat treatment is discussed. The samples are characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and LCR bridge. Microwave processing has enhanced the chemical reaction to form ferrites without any stray ferric oxide phases. Microscopic images have confirmed that the particles still retain nanoscale after microwave processing. An appreciably high magnetic moment is noticed. The experimental magnetic moment is used to estimate the cation distribution in tetrahedral and octahedral sites. Temperature and frequency dependence of initial permeability is discussed in the light of magnetic spin canting.

[1]  C. Kadiyala,et al.  Effect of microwave heat treatment on pure phase formation of hydrothermal synthesized nano NiMg ferrites , 2017 .

[2]  R. Kambale,et al.  Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites , 2016 .

[3]  Amarildo Tabone Paschoalini,et al.  Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers , 2016 .

[4]  J. N. Roy,et al.  Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals , 2016 .

[5]  Peng Song,et al.  A hierarchically porous MgFe2O4/γ-Fe2O3 magnetic microspheres for efficient removals of dye and pharmaceutical from water , 2016 .

[6]  Z. Abbas,et al.  Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles , 2015 .

[7]  M. Siddique,et al.  Cation distribution and enhanced surface effects on the temperature-dependent magnetization of as-prepared NiFe2O4 nanoparticles , 2015 .

[8]  C. Caizer Nanoparticle Size Effect on Some Magnetic Properties , 2015 .

[9]  M. Mahmoud,et al.  Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method , 2014 .

[10]  M. Gabal,et al.  Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor , 2014 .

[11]  Huaiwu Zhang,et al.  A low loss NiZnCo ferrite, prepared using a hydrothermal method, for antenna applications , 2014 .

[12]  L. Mitoseriu,et al.  Investigation of the functional properties of MgxNi1−xFe2O4 ceramics , 2014, Journal of Materials Science.

[13]  M. Eltabey,et al.  Improvement of the magnetic properties for Mn–Ni–Zn ferrites by rare earth Nd3+ ion substitution , 2013, Journal of advanced research.

[14]  Chuangui Jin,et al.  Hydrothermal Mg1−xZnxFe2O4 spinel ferrites: Phase formation and mechanism of saturation magnetization , 2013 .

[15]  Hidekazu Tanaka,et al.  Increase in initial permeability due to substitution of high spin cations in nanocrystalline Ni–Mg ferrites , 2013 .

[16]  P. Vasambekar,et al.  Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites , 2013 .

[17]  U. Ahmadu,et al.  Equivalent circuit models and analysis of impedance spectra of solid electrolyte , 2013 .

[18]  S. S. Sikder,et al.  MAGNETIC ORDERING IN NI-CD FERRITE , 2012 .

[19]  P. K. Roy,et al.  Study on electromagnetic properties of MgCuZn ferrite/BaTiO3 composites , 2012 .

[20]  A. Baykal,et al.  Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy , 2012, Journal of Nanoparticle Research.

[21]  M. Umetsu,et al.  Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction , 2010 .

[22]  G. Subramanyam,et al.  Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating , 2010 .

[23]  A. Maqsood,et al.  Structural, electrical and magnetic characterization of Ni–Mg spinel ferrites , 2009 .

[24]  V. Murthy,et al.  Comparison of initial permeability of MgCuZn ferrites sintered by both conventional and microwave methods , 2009 .

[25]  S. Maensiri,et al.  Magnesium Ferrite (MgFe2O4) Nanostructures Fabricated by Electrospinning , 2008, Nanoscale research letters.

[26]  G. Chandrasekaran,et al.  Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study , 2008 .

[27]  L. J. Berchmans,et al.  STRUCTURAL AND ELECTRICAL PROPERTIES OF NI1-XMGXFE2O4 SYNTHESIZED BY CITRATE GEL PROCESS , 2004 .

[28]  T. Kawai,et al.  Colossal magnetoresistance in spinel type Zn1−xNixFe2O4 , 2004 .

[29]  L. J. Berchmans,et al.  Evaluation of Mg2+-substituted NiFe2O4 as a green anode material , 2004 .

[30]  A. Birkholz,et al.  Ab initio study of oxygen vacancies in BaTiO3 , 2000 .

[31]  J. Ardisson,et al.  Nanosized powders of NiZn ferrite: Synthesis, structure, and magnetism , 2000 .

[32]  Zhengkui Xu,et al.  The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics , 1998 .

[33]  Berkowitz,et al.  Surface Spin Disorder in NiFe2O4 Nanoparticles. , 1996, Physical review letters.

[34]  R. G. Kulkarni,et al.  Yafet-Kittel type of magnetic ordering in Mg-Cd ferrites , 1985 .

[35]  K. Haneda,et al.  Magnetic structure of small NiFe2O4 particles , 1981 .

[36]  K. Okazaki,et al.  Effects of Porosity and Grain Size on the Magnetic Properties of NiZn Ferrite , 1977 .

[37]  M. G. Natera,et al.  Yafet-Kittel angles in Zinc-Nickel ferrites , 1969 .