Clonal population expansion of Staphylococcus aureus occurs due to escape from a finite number of intraphagocyte niches

[1]  S. Foster,et al.  Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species , 2021, PLoS pathogens.

[2]  Wenbin Li,et al.  Liposomal honokiol inhibits glioblastoma growth through regulating macrophage polarization , 2021, Annals of translational medicine.

[3]  S. Foster,et al.  The Role of Macrophages in Staphylococcus aureus Infection , 2021, Frontiers in Immunology.

[4]  S. Foster,et al.  Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression , 2020, PLoS pathogens.

[5]  M. Boots,et al.  A mathematical model shows macrophages delay Staphylococcus aureus replication, but limitations in microbicidal capacity restrict bacterial clearance , 2020, Journal of theoretical biology.

[6]  K. Ley,et al.  Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages , 2019, Front. Immunol..

[7]  John Jernigan,et al.  Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections — United States , 2019, MMWR. Morbidity and mortality weekly report.

[8]  Subhasis Chaudhuri,et al.  Current State of Art , 2019, Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks.

[9]  S. Foster,et al.  Human skin commensals augment Staphylococcus aureus pathogenesis , 2018, Nature Microbiology.

[10]  A. De Luca,et al.  Staphylococcus aureus vaccine preclinical and clinical development: current state of the art. , 2018, The new microbiologica.

[11]  S. Foster,et al.  Staphylococcus aureus infection dynamics , 2018, PLoS pathogens.

[12]  A. Zaborin,et al.  Can Methicillin-resistant Staphylococcus aureus Silently Travel From the Gut to the Wound and Cause Postoperative Infection? Modeling the “Trojan Horse Hypothesis” , 2017, Annals of surgery.

[13]  C. Weidenmaier,et al.  The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota , 2017, Nature Reviews Microbiology.

[14]  F. DeLeo,et al.  Vancomycin Resistance in Staphylococcus aureus
 , 2017, The Yale journal of biology and medicine.

[15]  P. Henneke,et al.  Dynamic interactions between dermal macrophages and Staphylococcus aureus , 2017, Journal of leukocyte biology.

[16]  B. Heit,et al.  Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination , 2016, Cellular microbiology.

[17]  S. Foster,et al.  Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages , 2015, Cellular microbiology.

[18]  A. Pantosti,et al.  Antimicrobial resistance: a global multifaceted phenomenon , 2015, Pathogens and global health.

[19]  M. Raes,et al.  M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide , 2015, BMC Cancer.

[20]  C. Penha-Gonçalves,et al.  How Inflammation Impinges on NAFLD: A Role for Kupffer Cells , 2015, BioMed research international.

[21]  M. Prinz,et al.  MyD88 in Macrophages Is Critical for Abscess Resolution in Staphylococcal Skin Infection , 2015, The Journal of Immunology.

[22]  S. Foster,et al.  Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention , 2014, PLoS pathogens.

[23]  D Kimberley Molina,et al.  Normal Organ Weights in Men: Part II—The Brain, Lungs, Liver, Spleen, and Kidneys , 2012, The American journal of forensic medicine and pathology.

[24]  S. Foster,et al.  A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model , 2012, Cellular microbiology.

[25]  T. Merkel,et al.  Dissemination Bottleneck in a Murine Model of Inhalational Anthrax , 2012, Infection and Immunity.

[26]  J. McCullers,et al.  Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. , 2011, Journal of theoretical biology.

[27]  V. Gant,et al.  Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? , 2011, Nature Reviews Microbiology.

[28]  A. Friedrich,et al.  Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[29]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[30]  C. Naber Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[31]  Olivier Restif,et al.  Modelling within-Host Spatiotemporal Dynamics of Invasive Bacterial Disease , 2008, PLoS biology.

[32]  S. Frank,et al.  Pathogenesis, Virulence, and Infective Dose , 2007, PLoS pathogens.

[33]  Anna-Karin Sohlenius-Sternbeck,et al.  Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements , 2006 .

[34]  S. Foster,et al.  Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. , 2006, The Journal of infectious diseases.

[35]  B. Rehermann,et al.  The liver as an immunological organ , 2006, Hepatology.

[36]  Denise Kirschner,et al.  Mycobacterium tuberculosis as viewed through a computer. , 2005, Trends in microbiology.

[37]  R. Maronpot,et al.  New Insights into Functional Aspects of Liver Morphology , 2005, Toxicologic pathology.

[38]  R. Read,et al.  Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. , 2001, The Journal of infectious diseases.

[39]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .