Quantum Random-Number Generator Based on Tunneling Effects in a Si Diode

Previously, we built up a set of photon-free quantum random number generator(QRNG) with InGaAs single photon avalanche diodes. We exploited the stochastic property of quantum tunneling effect. Here, we utilized tunneling signals in Si diodes to implement quantum random number generator. In our experiment, instead of applying periodic pulses between the diode as we did in the InGaAs QRNG, we applied fixed voltage and detect time intervals between adjacent tunneling signals, as random source. This Si QRNG has a high performance in the randomness of its raw data and almost post-processing-free. Final data rate in our experiment is 6.98MB/s and could reach 23MB/s if the temperature-control system is ameliorated.

[1]  Olivier Chevassut,et al.  Key Derivation and Randomness Extraction , 2005, IACR Cryptol. ePrint Arch..

[2]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[3]  Ran Raz,et al.  Improved Randomness Extraction from Two Independent Sources , 2004, APPROX-RANDOM.

[4]  E. Jeffrey,et al.  Photon arrival time quantum random number generation , 2009 .

[5]  D. G. Knight,et al.  Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery , 1990 .

[6]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[7]  Yang Liu,et al.  The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. , 2015, The Review of scientific instruments.

[8]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[9]  Xiao,et al.  Model based on trap-assisted tunneling for two-level current fluctuations in submicrometer metal-silicon-dioxide-silicon diodes. , 1990, Physical review. B, Condensed matter.

[10]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[11]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[12]  Juan Pablo Paz,et al.  Randomness in Quantum Computation , 2003, Science.

[13]  A. Schenk Rigorous theory and simplified model of the band-to-band tunneling in silicon , 1993 .

[14]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[15]  Christian P. Robert,et al.  Machine Learning, a Probabilistic Perspective , 2014 .

[16]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[17]  Xiao Yuan,et al.  Source-Independent Quantum Random Number Generation , 2015, Physical Review X.

[18]  R. Wiggins Minimum entropy deconvolution , 1978 .

[19]  Moti Yung,et al.  A New Randomness Extraction Paradigm for Hybrid Encryption , 2009, EUROCRYPT.

[20]  Ling-An Wu,et al.  Random number generation based on the time of arrival of single photons. , 2005, Applied optics.

[21]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[22]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[23]  Haihan Zhou,et al.  Quantum random number generator based on quantum tunneling effect , 2017, 1711.01752.

[24]  Franco Zappa,et al.  Evolution and prospects for single-photon avalanche diodes and quenching circuits , 2004 .

[25]  Lawrence E. Bassham,et al.  Randomness Testing of the Advanced Encryption Standard Finalist Candidates , 2000 .

[26]  Davide Contini,et al.  Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode , 2012 .

[27]  T. Erber,et al.  Randomness in quantum mechanics—nature's ultimate cryptogram? , 1985, Nature.

[28]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[29]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.