Robotic metamorphosis by origami exoskeletons

The shape and the functionality of a robot can be changed by using interchangeable self-folding origami exoskeletons. Changing the inherent physical capabilities of robots by metamorphosis has been a long-standing goal of engineers. However, this task is challenging because of physical constraints in the robot body, each component of which has a defined functionality. To date, self-reconfiguring robots have limitations in their on-site extensibility because of the large scale of today’s unit modules and the complex administration of their coordination, which relies heavily on on-board electronic components. We present an approach to extending and changing the capabilities of a robot by enabling metamorphosis using self-folding origami “exoskeletons.” We show how a cubical magnet “robot” can be remotely moved using a controllable magnetic field and hierarchically develop different morphologies by interfacing with different origami exoskeletons. Activated by heat, each exoskeleton is self-folded from a rectangular sheet, extending the capabilities of the initial robot, such as enabling the manipulation of objects or locomotion on the ground, water, or air. Activated by water, the exoskeletons can be removed and are interchangeable. Thus, the system represents an end-to-end (re)cycle. We also present several robot and exoskeleton designs, devices, and experiments with robot metamorphosis using exoskeletons.

[1]  Dario Floreano,et al.  Performance analysis of jump-gliding locomotion for miniature robotics , 2015, Bioinspiration & biomimetics.

[2]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[3]  Dominic R. Frutiger,et al.  Wireless resonant magnetic microactuator for untethered mobile microrobots , 2008 .

[4]  K. Arai,et al.  Micro swimming mechanisms propelled by external magnetic fields , 1996 .

[5]  Daniela Rus,et al.  M-blocks: Momentum-driven, magnetic modular robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Daniela Rus,et al.  Ingestible, controllable, and degradable origami robot for patching stomach wounds , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[7]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[8]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[9]  Hod Lipson,et al.  Robotics: Self-reproducing machines , 2005, Nature.

[10]  Mark Yim,et al.  Structure synthesis on-the-fly in a modular robot , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Jake J. Abbott,et al.  OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation , 2010, IEEE Transactions on Robotics.

[12]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[13]  Fumiya Iida,et al.  Mechanics and energetics in tool manufacture and use: a synthetic approach , 2014, Journal of The Royal Society Interface.

[14]  Daniela Rus,et al.  Autonomous locomotion of a miniature, untethered origami robot using hall effect sensor-based magnetic localization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Metin Sitti,et al.  Independent control of multiple magnetic microrobots in three dimensions , 2013, Int. J. Robotics Res..

[16]  Andrzej Czubaj,et al.  Recenzja książki: Neil A. Campbell, Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B Jackson, BIOLOGIA, Dom wydawniczy REBIS, Poznań 2012 , 2014 .

[17]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[18]  Amir Firouzeh,et al.  A Fully Integrated Low-Profile Robotic Origami , 2015 .

[19]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[20]  Robert J. Wood,et al.  Addressable wireless actuation for multijoint folding robots and devices , 2017, Science Robotics.

[21]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[22]  L. Penrose,et al.  Self-Reproducing Machines , 1959 .

[23]  J. E. Clark,et al.  Design of a Multimodal Climbing and Gliding Robotic Platform , 2013, IEEE/ASME Transactions on Mechatronics.

[24]  Metin Sitti,et al.  Six-degree-of-freedom magnetic actuation for wireless microrobotics , 2016, Int. J. Robotics Res..

[25]  Francisco J. Tapiador,et al.  A Synthetic Approach , 2008 .

[26]  Metin Sitti,et al.  Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions , 2013, Int. J. Robotics Res..

[27]  Satoshi Murata,et al.  Self-reconfigurable robots , 2007, IEEE Robotics & Automation Magazine.

[28]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[29]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[30]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[31]  Amir Firouzeh,et al.  Robogami: A Fully Integrated Low-Profile Robotic Origami , 2015 .

[32]  Ronald S. Fearing,et al.  RoACH: An autonomous 2.4g crawling hexapod robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[34]  Kazushi Ishiyama,et al.  Magnetic micromachines for medical applications , 2002 .

[35]  Cagdas D. Onal,et al.  Self-pop-up cylindrical structure by global heating , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Ludovico Cademartiri,et al.  Programmable self-assembly. , 2015, Nature materials.

[37]  Kyu-Jin Cho,et al.  Flea-Inspired Catapult Mechanism for Miniature Jumping Robots , 2012, IEEE Transactions on Robotics.

[38]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[39]  R. Full,et al.  Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot , 2016, Proceedings of the National Academy of Sciences.

[40]  Erik D. Demaine,et al.  Programmable Assembly With Universally Foldable Strings (Moteins) , 2011, IEEE Transactions on Robotics.

[41]  H. Miura,et al.  Insect-like microrobots with external skeletons , 1993, IEEE Control Systems.

[42]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[43]  Daniela Rus,et al.  An untethered miniature origami robot that self-folds, walks, swims, and degrades , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Larry L. Howell,et al.  An Approach to Designing Origami-Adapted Aerospace Mechanisms , 2016 .

[45]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[46]  Robert J. Wood,et al.  Origami-Inspired Printed Robots , 2015, IEEE/ASME Transactions on Mechatronics.

[47]  Dominic R. Frutiger,et al.  Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[48]  Metin Sitti,et al.  MultiMo-Bat: A biologically inspired integrated jumping–gliding robot , 2014, Int. J. Robotics Res..

[49]  Shuuji Kajita,et al.  Field and service appkications - Dinosaur robotics for entertainment applications - Design, Configurations, Controt, and Exhibition at the World Exposition , 2007, IEEE Robotics & Automation Magazine.

[50]  Daniela Rus,et al.  Self-folded soft robotic structures with controllable joints , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).