Performance analysis of an evolutionary algorithm for fault detection in t-diagnosable multi-processor systems

In this paper, we present a performance analysis of an evolutionary approach for fault identification in t-diagnosable systems, i.e. systems in which the set of t permanently faulty units could be unambiguously identified. The proposed algorithm is based on evolutionary/genetic computing and is shown to correctly identify the set of faulty units. Simulation results are more than encouraging and should stimulate future research.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Sampath Rangarajan,et al.  Diagnosing Arbitrarily Connected Parallel Computers with High Probability , 1992, IEEE Trans. Computers.

[3]  Kyung-Yong Chwa,et al.  Schemes for Fault-Tolerant Computing: A Comparison of Modularly Redundant and t-Diagnosable Systems , 1981, Inf. Control..

[4]  Andrzej Pelc,et al.  Diagnosis and Repair in Multiprocessor Systems , 1993, IEEE Trans. Computers.

[5]  Aurora Trinidad Ramirez Pozo,et al.  A comparison of evolutionary algorithms for system-level diagnosis , 2005, GECCO '05.

[6]  GERNOT METZE,et al.  On the Connection Assignment Problem of Diagnosable Systems , 1967, IEEE Trans. Electron. Comput..

[7]  Kyung-Yong Chwa,et al.  On Fault Identification in Diagnosable Systems , 1981, IEEE Transactions on Computers.

[8]  Anton T. Dahbura,et al.  System-Level Diagnosis: A Perspective for the Third Decade , 1988 .

[9]  Stefano Chessa,et al.  Reducing the number of sequential diagnosis iterations in hypercubes , 2004, IEEE Transactions on Computers.

[10]  Abhijit Sengupta,et al.  On Self-Diagnosable Multiprocessor Systems: Diagnosis by the Comparison Approach , 1992, IEEE Trans. Computers.

[11]  Amiya Nayak,et al.  A parallel genetic algorithm for identifying faults in large diagnosable systems , 2005, Parallel Algorithms Appl..

[12]  Stefano Chessa,et al.  Fault-diagnosis of grid structures , 2003, Theor. Comput. Sci..

[13]  S. L. Hakimi,et al.  System-level fault diagnosis: A survey , 1987 .

[14]  Stefano Chessa,et al.  Diagnosability of regular systems , 2002, J. Algorithms.

[15]  S. Louis Hakimi,et al.  Characterization of Connection Assignment of Diagnosable Systems , 1974, IEEE Transactions on Computers.

[16]  Béchir el Ayeb Fault identification algorithmic: a new formal approach , 1999, Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No.99CB36352).

[17]  S. Louis Hakimi,et al.  On Adaptive System Diagnosis , 1984, IEEE Transactions on Computers.

[18]  Tiko Kameda,et al.  A Diagnosing Algorithm for Networks , 1975, Inf. Control..

[19]  Arthur D. Friedman,et al.  System-Level Fault Diagnosis , 1980, Computer.

[20]  Kang G. Shin,et al.  Probabilistic diagnosis of multiprocessor systems , 1994, CSUR.

[21]  G. F. Sullivan,et al.  An O(t3 + |E|) Fault Identification Algorithm for Diagnosable Systems , 1988, IEEE Trans. Computers.

[22]  Douglas M. Blough,et al.  The Broadcast Comparison Model for On-Line Fault Diagnosis in Multicomputer Systems , 1999, IEEE Trans. Computers.

[23]  Andrzej Pelc,et al.  Undirected Graph Models for System-Level Fault Diagnosis , 1991, IEEE Trans. Computers.

[24]  S. Louis Hakimi,et al.  On an Algorithm for Identifying Faults in a T-Diagnosable System, , 1976 .

[25]  Gerald M. Masson,et al.  Diagnosis Without Repair for Hybrid Fault Situations , 1980, IEEE Transactions on Computers.

[26]  Gwangil Jeon,et al.  A partitioning method for efficient system-level diagnosis , 2002, J. Syst. Softw..

[27]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[28]  Xiaofan Yang A fast pessimistic one-step diagnosis algorithm for hypercube multicomputer systems , 2004, J. Parallel Distributed Comput..

[29]  Miroslaw Malek,et al.  A comparison connection assignment for diagnosis of multiprocessor systems , 1980, ISCA '80.

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Fabrizio Grandoni,et al.  A Theory of Diagnosability of Digital Systems , 1976, IEEE Transactions on Computers.

[32]  Douglas M. Blough,et al.  Efficient Diagnosis of Multiprocessor Systems under Probabilistic Models , 1992, IEEE Trans. Computers.

[33]  Gerald M. Masson,et al.  An 0(n2.5) Fault Identification Algorithm for Diagnosable Systems , 1984, IEEE Transactions on Computers.

[34]  Miroslaw Malek,et al.  The consensus problem in fault-tolerant computing , 1993, CSUR.

[35]  Sushil J. Louis,et al.  Predicting Convergence Time for Genetic Algorithms , 1993 .

[36]  Vinod K. Agarwal,et al.  Distributed Diagnosis Algorithms for Regular Interconnected Structures , 1992, IEEE Trans. Computers.

[37]  Mourad Elhadef,et al.  An evolutionary algorithm for identifying faults in t-diagnosable systems , 2000, Proceedings 19th IEEE Symposium on Reliable Distributed Systems SRDS-2000.

[38]  Che-Liang Yang,et al.  Self-Implicating Structures for Diagnosable Systems , 1985, IEEE Transactions on Computers.

[39]  Hong Wang,et al.  Actuator and sensor fault diagnosis of non-linear dynamic systems via genetic algorithms, neural networks, and adaptive estimation technique , 1998 .

[40]  Stefano Chessa,et al.  Diagnosis of Symmetric Graphs Under the BGM Model , 2004, Comput. J..

[41]  Carol A. Ankenbrandt An Extension to the Theory of Convergence and a Proof of the Time Complexity of Genetic Algorithms , 1990, FOGA.