Baseline-free damage visualization using noncontact laser nonlinear ultrasonics and state space geometrical changes

Damage often causes a structural system to exhibit severe nonlinear behaviors, and the resulting nonlinear features are often much more sensitive to the damage than their linear counterparts. This study develops a laser nonlinear wave modulation spectroscopy (LNWMS) so that certain types of damage can be detected without any sensor placement. The proposed LNWMS utilizes a pulse laser to generate ultrasonic waves and a laser vibrometer for ultrasonic measurement. Under the broadband excitation of the pulse laser, a nonlinear source generates modulations at various frequency values due to interactions among various input frequency components. State space attractors are reconstructed from the ultrasonic responses measured by LNWMS, and a damage feature called Bhattacharyya distance (BD) is computed from the state space attractors to quantify the degree of damage-induced nonlinearity. By computing the BD values over the entire target surface using laser scanning, damage can be localized and visualized without relying on the baseline data obtained from the pristine condition of a target structure. The proposed technique has been successfully used for visualizing fatigue crack in an aluminum plate and delamination and debonding in a glass fiber reinforced polymer wind turbine blade.

[1]  S. Yuan,et al.  High spatial resolution imaging for structural health monitoring based on virtual time reversal , 2011 .

[2]  K. E.-A. Van Den Abeele,et al.  Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS) , 2000 .

[3]  Hoon Sohn,et al.  Corrigendum to “Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning” [Compos. Sci. Technol. 100 (2014) 10–18] , 2014 .

[4]  Jan Drewes Achenbach,et al.  Detection of thermal fatigue in composites by second harmonic Lamb waves , 2012 .

[5]  J. Payá,et al.  Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC) , 2013 .

[6]  K. E. -A. Van Den Abeele,et al.  Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy , 2000, Research in Nondestructive Evaluation.

[7]  Jeong-Beom Ihn,et al.  Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures , 2008 .

[8]  E. Ryabov,et al.  Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamics , 2012 .

[9]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  Steve Rothberg,et al.  Introducing speckle noise maps for Laser Vibrometry , 2009 .

[11]  L. Drain,et al.  Laser Ultrasonics Techniques and Applications , 1990 .

[12]  Tribikram Kundu,et al.  Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS) , 2014 .

[13]  Lev A. Matveev,et al.  Elastic-wave modulation approach to crack detection: Comparison of conventional modulation and higher-order interactions , 2011 .

[14]  Joseph L. Rose,et al.  Ultrasonic Guided Wave Imaging Techniques in Structural Health Monitoring , 2010 .

[15]  Michael D. Todd,et al.  A parametric investigation of state-space-based prediction error methods with stochastic excitation for structural health monitoring , 2007 .

[16]  Fabrizio Scarpa,et al.  Structural health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection , 2004 .

[17]  Michael D. Todd,et al.  A multivariate, attractor-based approach to structural health monitoring , 2005 .

[18]  Peipei Liu,et al.  Binding conditions for nonlinear ultrasonic generation unifying wave propagation and vibration , 2014 .

[19]  Hyung Jin Lim,et al.  Nonlinear ultrasonic wave modulation for online fatigue crack detection , 2014 .

[20]  Peipei Liu,et al.  Non-contact visualization of nonlinear ultrasonic modulation for reference-free fatigue crack detection , 2014, Smart Structures.

[21]  T. Kundu,et al.  Acoustic source localization in anisotropic plates. , 2012, Ultrasonics.

[22]  Hoon Sohn,et al.  Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate , 2013 .

[23]  Christian Boller,et al.  Ways and options for aircraft structural health management , 2001 .

[24]  Lev A. Matveev,et al.  On the ultimate sensitivity of nonlinear-modulation method of crack detection , 2009 .

[25]  Jonathan M. Nichols,et al.  Structural health monitoring of offshore structures using ambient excitation , 2003 .

[26]  Michele Meo,et al.  Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods , 2008 .

[27]  A. Sutin,et al.  Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS) , 2000 .

[28]  Dario Di Maio,et al.  Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations , 2012 .

[29]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[30]  Victor Giurgiutiu,et al.  Embedded-ultrasonics Structural Radar for In Situ Structural Health Monitoring of Thin-wall Structures , 2004 .

[31]  Yves H. Berthelot,et al.  Detection of small surface-breaking fatigue cracks in steel using scattering of Rayleigh waves , 2001 .

[32]  Charles R. Farrar,et al.  The fundamental axioms of structural health monitoring , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Gang Liu,et al.  Localization of nonlinear damage using state-space-based predictions under stochastic excitation , 2014 .

[34]  Douglas E. Adams,et al.  Vibro-Acoustic Modulation Utilizing a Swept Probing Signal for Robust Crack Detection , 2010 .

[35]  Douglas E. Adams,et al.  Health monitoring of structural materials and components : methods with applications , 2007 .

[36]  Hoon Sohn,et al.  Wavelet-based active sensing for delamination detection in composite structures , 2004 .

[37]  Zhongqing Su,et al.  Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network , 2012 .

[38]  F. Takens Detecting strange attractors in turbulence , 1981 .

[39]  Hoon Sohn,et al.  Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning , 2014 .

[40]  Lei Wang,et al.  Damage Identification in a Composite Plate using Prestack Reverse-time Migration Technique , 2005 .