Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method

[1]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[2]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[3]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[4]  Victor Wouk HYBRID ELECTRIC VEHICLES , 1997 .

[5]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[6]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  Jaroslaw Sobieszczanski-Sobieski,et al.  Particle swarm optimization , 2002 .

[8]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[9]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[10]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[11]  Chao-Ming Huang,et al.  A particle swarm optimization to identifying the ARMAX model for short-term load forecasting , 2005 .

[12]  V. Subramanian,et al.  Efficient Macro-Micro Scale Coupled Modeling of Batteries , 2005 .

[13]  Bijan Samali,et al.  A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .

[14]  R. Jayakanth,et al.  Genetic Algorithms Applied to Li+ Ions Contained in Carbon Nanotubes: An Investigation Using Particle Swarm Optimization and Differential Evolution Along with Molecular Dynamics , 2007 .

[15]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[16]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[17]  Nirupam Chakraborti,et al.  Evolutionary and Genetic Algorithms Applied to Li+-C System: Calculations Using Differential Evolution and Particle Swarm Algorithm , 2007 .

[18]  Venkat R. Subramanian,et al.  Towards "Real-Time" Simulation of Physics Based Lithium Ion Battery Models , 2007 .

[19]  Giovanni Fiengo,et al.  Experimental identification and validation of an electrochemical model of a lithium-ion battery , 2009, 2009 European Control Conference (ECC).

[20]  P. S. Manoharan,et al.  Evolutionary algorithm solution and KKT based optimality verification to multi-area economic dispatch , 2009 .

[21]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[22]  John Newman,et al.  Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries , 2009 .

[23]  Rolf Findeisen,et al.  State estimation of a reduced electrochemical model of a lithium-ion battery , 2010, Proceedings of the 2010 American Control Conference.

[24]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[25]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[26]  N A Chaturvedi,et al.  Modeling, estimation, and control challenges for lithium-ion batteries , 2010, Proceedings of the 2010 American Control Conference.

[27]  Hosam K. Fathy,et al.  Genetic parameter identification of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 battery , 2011, Proceedings of the 2011 American Control Conference.

[28]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[29]  Rolf Findeisen,et al.  Electrochemical Model Based Observer Design for a Lithium-Ion Battery , 2013, IEEE Transactions on Control Systems Technology.

[30]  Sohel Anwar,et al.  Electrochemical Model Based Fault Diagnosis of Li-Ion Battery Using Fuzzy Logic , 2014 .

[31]  Jimi Tjong,et al.  Reduced-Order Electrochemical Model Parameters Identification and SOC Estimation for Healthy and Aged Li-Ion Batteries Part I: Parameterization Model Development for Healthy Batteries , 2014, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[32]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models , 2009 .