Proteomic characterization of serine hydrolase activity and composition in normal urine

[1]  J. Emsley,et al.  Structure of plasma and tissue kallikreins , 2013, Thrombosis and Haemostasis.

[2]  G. Navis,et al.  Urinary plasmin inhibits TRPV5 in nephrotic-range proteinuria. , 2012, Journal of the American Society of Nephrology : JASN.

[3]  G. Plante,et al.  Impact of kinins in the treatment of cardiovascular diseases. , 2012, Pharmacology & therapeutics.

[4]  Piet Gros,et al.  The modular serine proteases of the complement cascade. , 2012, Current opinion in structural biology.

[5]  M. Morris,et al.  Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. , 2012, American journal of physiology. Endocrinology and metabolism.

[6]  B. Cravatt,et al.  The pharmacological landscape and therapeutic potential of serine hydrolases , 2012, Nature Reviews Drug Discovery.

[7]  F. Molina,et al.  Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome. , 2011, Journal of proteomics.

[8]  R. Chambrey,et al.  Role of tissue kallikrein in regulation of tubule function , 2011, Current opinion in nephrology and hypertension.

[9]  R. Unwin,et al.  Potential Role of Serine Proteases in Modulating Renal Sodium Transport in vivo , 2011, Nephron Physiology.

[10]  D. O'Connor,et al.  Renal kallikrein excretion and epigenetics in human acute kidney injury: Expression, mechanisms and consequences , 2011, BMC nephrology.

[11]  Dhanashree S. Kelkar,et al.  A comprehensive map of the human urinary proteome. , 2011, Journal of proteome research.

[12]  M. Mann,et al.  Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. , 2011, Journal of proteome research.

[13]  P. Meneton,et al.  Tissue kallikrein permits early renal adaptation to potassium load , 2010, Proceedings of the National Academy of Sciences.

[14]  L. Chao,et al.  Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing , 2010, Biological chemistry.

[15]  B. Cravatt,et al.  Activity-based Proteomics of Enzyme Superfamilies: Serine Hydrolases as a Case Study* , 2010, The Journal of Biological Chemistry.

[16]  R. Hughey,et al.  New role for plasmin in sodium homeostasis , 2010, Current opinion in nephrology and hypertension.

[17]  H. Thiesson,et al.  Plasmin in nephrotic urine activates the epithelial sodium channel. , 2009, Journal of the American Society of Nephrology : JASN.

[18]  J. Ring,et al.  Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. , 2008, The Journal of clinical investigation.

[19]  B. Cravatt,et al.  Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. , 2008, Annual review of biochemistry.

[20]  M. Burnier,et al.  Defective ENaC Processing and Function in Tissue Kallikrein-deficient Mice* , 2008, Journal of Biological Chemistry.

[21]  J. Hoenderop,et al.  Regulation of the epithelial calcium channel TRPV5 by extracellular factors , 2007, Current opinion in nephrology and hypertension.

[22]  P. Houillier,et al.  Tissue kallikrein stimulates Ca2+ reabsorption via PKC‐dependent plasma membrane accumulation of TRPV5 , 2006, The EMBO journal.

[23]  Yu-Chang Tyan,et al.  Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrospray ionization tandem mass spectrometry. , 2006, Analytica chimica acta.

[24]  Baohong Zhang,et al.  High-resolution functional proteomics by active-site peptide profiling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Volanakis,et al.  A novel human complement-related protein, C1r-like protease (C1r-LP), specifically cleaves pro-C1s. , 2005, The Biochemical journal.

[26]  Nan Li,et al.  A novel human dendritic cell-derived C1r-like serine protease analog inhibits complement-mediated cytotoxicity. , 2004, Biochemical and biophysical research communications.

[27]  P. Deddish,et al.  Products of angiotensin I hydrolysis by human cardiac enzymes potentiate bradykinin. , 2002, Journal of molecular and cellular cardiology.

[28]  Irwin D Kuntz,et al.  Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. , 2002, Chemistry & biology.

[29]  Koji Yamada,et al.  Cholesterol esterase accelerates intestinal cholesterol absorption. , 2002, Biochimica et biophysica acta.

[30]  E. G. Erdös,et al.  Angiotensin 1-9 and 1-7 Release in Human Heart: Role of Cathepsin A , 2002, Hypertension.

[31]  T. Fujita Evolution of the lectin–complement pathway and its role in innate immunity , 2002, Nature Reviews Immunology.

[32]  J. Calafat,et al.  Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. , 2001, Blood.

[33]  B. Cravatt,et al.  Activity-based protein profiling: the serine hydrolases. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mark I. R. Petalcorin,et al.  Clinical Proteomics , 2015, Methods in Molecular Biology.

[35]  Matthew Bogyo,et al.  Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. , 2007, Current pharmaceutical design.