Atomic-Scale Understanding of the Interaction of Poly(3-hexylthiophene) with the NiO (100) Surface: A First-Principles Study

Although NiO exhibits great potential as a hole transport layer in polymer organic electronic devices, our understanding of the atomic structure of organics/NiO interfaces and the effect of NiO surface modification on device performance is still limited. Here, we report the study of the structure and electronic properties of the monomer of the regioregular poly(3-hexylthiophene) (rr-P3HT)/NiO (100) interface by means of first-principles calculations. Different adsorption sites and orientations were studied, and a global minimum configuration was determined. The backbone of P3HT monomer prefers to orient along the O—O direction, while the side chains prefer to align in the Ni—O direction of the NiO (100) surface. Although a significant contribution to the adsorption energy comes from the side chains, strong electronic coupling is found between the backbone of P3HT and NiO. Our calculations indicate that the interfacial electronic structure of organics/NiO is key to device performance. Further, the calculat...

[1]  A. Freeman,et al.  Orientation-Dependent Electronic Structures and Optical Properties of the P3HT:PCBM Interface: A First-Principles GW-BSE Study , 2014 .

[2]  M. Alouani,et al.  Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO , 2000 .

[3]  Xindong Zhang,et al.  Role of tungsten oxide in inverted polymer solar cells , 2009 .

[4]  Stephan Friedrich,et al.  The Consequences of Interface Mixing on Organic Photovoltaic Device Characteristics , 2010 .

[5]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[6]  Claudia Ambrosch-Draxl,et al.  Importance of van der Waals interaction for organic molecule-metal junctions: adsorption of thiophene on Cu(110) as a prototype. , 2007, Physical review letters.

[7]  J. Martorell,et al.  Sputtered NiO as electron blocking layer in P3HT:PCBM solar cells fabricated in ambient air , 2011 .

[8]  Robert P. H. Chang,et al.  Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells , 2011 .

[9]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[10]  Masuki Kawamoto,et al.  Thienoisoindigo-based low-band gap polymers for organic electronic devices , 2013 .

[11]  Xinyu Zhang,et al.  Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles , 2009 .

[12]  D. Ginley,et al.  Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers , 2011 .

[13]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[14]  Lin-wang Wang,et al.  Modeling of nanoscale morphology of regioregular poly(3-hexylthiophene) on a ZnO (1010) surface. , 2008, Nano letters.

[15]  E. Samulski,et al.  Role of thin n-type metal-oxide interlayers in inverted organic solar cells. , 2012, ACS applied materials & interfaces.

[16]  M. Belkhir,et al.  Nature of the NiO absorption edge within a spin polarized band scheme , 1990 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  A. Kahn,et al.  P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide , 2009 .

[19]  D. Bradley,et al.  The Effect of Organic and Metal Oxide Interfacial layers on the Performance of Inverted Organic Photovoltaics , 2013 .

[20]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[21]  M. Ko,et al.  Solution processed WO3 layer for the replacement of PEDOT:PSS layer in organic photovoltaic cells , 2012 .

[22]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[23]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  M. Toney,et al.  Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymer‐Fullerene Bulk Heterojunction , 2014 .

[26]  Daniel Sebastiani,et al.  A strategy for revealing the packing in semicrystalline π-conjugated polymers: crystal structure of bulk poly-3-hexyl-thiophene (P3HT). , 2012, Angewandte Chemie.

[27]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[28]  A. Kahn,et al.  Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces , 2010 .

[29]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  Franky So,et al.  Metal oxides for interface engineering in polymer solar cells , 2012 .

[32]  M. McLachlan,et al.  Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers , 2011 .

[33]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[34]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  L. Thomassen An X-Ray Investigation of the System Cr2O3-NiO1 , 1940 .

[37]  Merz,et al.  Localized d-d excitations in NiO(100) and CoO(100). , 1994, Physical review. B, Condensed matter.

[38]  D. Carroll,et al.  Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer , 2010 .

[39]  N. Armstrong,et al.  Energy Level Alignment in PCDTBT:PC70BM Solar Cells: Solution Processed NiOx for Improved Hole Collection and Efficiency , 2012 .

[40]  Zhenghong Lu,et al.  Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films , 2010 .

[41]  D. Ginley,et al.  Solution deposited NiO thin-films as hole transport layers in organic photovoltaics , 2010 .

[42]  Andrés J. García,et al.  Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics , 2011 .

[43]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.