SPINS OF SUPERMASSIVE BLACK HOLES IN M87. II. FULLY GENERAL RELATIVISTIC CALCULATIONS

The fast variability of energetic TeV photons from the center of M87 has been detected, offering a new clue to estimate spins of supermassive black holes (SMBHs). We extend the study of Wang et al. by including all of the general relativistic effects. We numerically solve the full set of relativistic hydrodynamical equations of the radiatively inefficient accretion flows (RIAFs) and then obtain the radiation fields around the black hole. The optical depth of the radiation fields to TeV photons due to pair productions is calculated in the Kerr metric. We find that the optical depth strongly depends on (1) accretion rates as tau(TeV) proportional to (M) over dot(2.5-5.0), (2) black hole spins, and (3) location of the TeV source. Jointly considering the optical depth and the spectral energy distribution radiated from the RIAFs, the strong degeneration of the spin with the other free parameters in the RIAF model can be largely relaxed. We apply the present model to M87, wherein the RIAFs are expected to be at work, and find that the minimum specific angular momentum of the hole is a similar to 0.8. The present methodology is applicable to M87-like sources with future detection of TeV emissions to constrain the spins of SMBHs.

[1]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[2]  Evidence for rapidly spinning black holes in quasars , 2006, astro-ph/0603813.

[3]  IMAGES OF THE RADIATIVELY INEFFICIENT ACCRETION FLOW SURROUNDING A KERR BLACK HOLE: APPLICATION IN Sgr A* , 2009, 0904.4090.

[4]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[5]  Ye-Fei Yuan,et al.  EMERGENT SPECTRA FROM DISKS SURROUNDING KERR BLACK HOLES: EFFECT OF PHOTON TRAPPING AND DISK SELF-SHADOWING , 2009, 0910.3530.

[6]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[7]  Geoffrey V. Bicknell,et al.  Understanding the Kiloparsec-Scale Structure of M87 , 1996 .

[8]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[9]  J. C. Lee,et al.  A long hard look at MCG–6-30-15 with XMM-Newton , 2002, astro-ph/0311473.

[10]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[11]  D. Graham,et al.  6-cm VLBI observations of compact radio sources , 1981 .

[12]  Levinson,et al.  Particle acceleration and curvature TeV emission by rotating, supermassive black holes , 2000, Physical review letters.

[13]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[14]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[15]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[16]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[17]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[18]  A. Babul,et al.  Models for jet power in elliptical galaxies: a case for rapidly spinning black holes , 2006, astro-ph/0612354.

[19]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[20]  Martin J. Rees,et al.  The matter content of the jet in M87: evidence for an electron—positronjet , 1996 .

[21]  F. A. Aharonian,et al.  Variable VHE gamma-ray emission from non-blazar AGNs , 2007, 0712.2902.

[22]  M. Ostrowski,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006 .

[23]  Dan Maoz,et al.  The Murmur of the Sleeping Black Hole: Detection of Nuclear Ultraviolet Variability in LINER Galaxies , 2005, astro-ph/0502347.

[24]  William B. Sparks,et al.  Deep 10 Micron Imaging of M87 , 2001 .

[25]  Felix Aharonian,et al.  Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87 , 2007, 0704.3282.

[26]  R. Narayan,et al.  Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations , 2004, astro-ph/0411583.

[27]  Yan-Rong Li,et al.  Spins of the Supermassive Black Hole in M87: New Constraints from TeV Observations , 2008, 0802.4322.

[28]  H. Ford,et al.  HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[29]  R. Blandford,et al.  Reaction rates and energy distributions for elementary processes in relativistic pair plasmas , 1990, Monthly Notices of the Royal Astronomical Society.

[30]  A. C. Fabian,et al.  The mass density in black holes inferred from the X-ray background , 1999 .

[31]  A compact radio source in the nucleus of M87 , 1986, Nature.

[32]  Advection-Dominated Accretion Flows Around Kerr Black Holes , 1996, astro-ph/9607021.

[33]  T. Manmoto Advection-dominated Accretion Flow around a Kerr Black Hole , 2000 .

[34]  David L. Meier,et al.  The Association of Jet Production with Geometrically Thick Accretion Flows and Black Hole Rotation , 2000, astro-ph/0010231.

[35]  A. Čadež,et al.  Line Emission From Accretion Discs Around Black Holes , 1998 .

[36]  William B. Sparks,et al.  The Jet of M87 at Tenth-Arcsecond Resolution: Optical, Ultraviolet, and Radio Observations , 1996 .

[37]  Jian-Min Wang,et al.  The central engines of radio-loud quasars , 2003, astro-ph/0308040.

[38]  G. Zamorani,et al.  Most Supermassive Black Holes Must Be Rapidly Rotating , 2001, astro-ph/0112413.

[39]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[40]  R. Gould,et al.  Pair production in photon-photon collisions. , 1967 .

[41]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[42]  R. Blandford,et al.  Pair cascades in extragalactic jets. 1: Gamma rays , 1995 .

[43]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[44]  R. Blandford,et al.  Optical Caustics in a Kerr Spacetime and the Origin of Rapid X-Ray Variability in Active Galactic Nuclei , 1994 .

[45]  S. Mineshige,et al.  Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A* , 1997, astro-ph/9708234.

[46]  A. Levinson High-Energy Aspects of Astrophysical Jets , 2005, astro-ph/0611521.