Theoretical and Numerical Aspects in the Thermo-Viscoelastic Material Behaviour of Rubber-Like Polymers

Most current models for finite deformation thermo-viscoelasticity are restricted to linear evolution laws for the viscous behaviour and to thermorheologically simple materials. In this paper, we extend a model for finite deformation viscoelasticity that utilizes a nonlinear evolution law to include thermal effects. In particular, we present a thermodynamically consistent framework for the model and give a detailed form for then on-equilibrium Helmholtz free energy of the material in terms of the isothermal free energy function. The use of the model in a computational setting is addressed and it is shown that an efficient predictor-correct oralgorithm can be used to integrate the evolution equation of the proposed constitutive model. The integration algorithm makes crucial use of the exponential map as has been done previously in elastoplasticity. Numerical examples are presented to show some interesting features of the new model.

[1]  T. Cost A free energy functional for thermorheologically simple materials , 1973 .

[2]  P. Le Tallec,et al.  Numerical models of steady rolling for non‐linear viscoelastic structures in finite deformations , 1994 .

[3]  Gerhard A. Holzapfel,et al.  A new viscoelastic constitutive model for continuous media at finite thermomechanical changes , 1996 .

[4]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[5]  E. Sternberg,et al.  On Transient Thermal Stresses in Viscoelastic Materials With Temperature-Dependent Properties , 1961 .

[6]  P. Chadwick,et al.  Thermo-mechanics of rubberlike materials , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  Peter Wriggers,et al.  A finite element method for stability problems in finite elasticity , 1995 .

[8]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[9]  J. E. Mark Thermoelastic Properties of Rubberlike Networks and Their Thermodynamic and Molecular Interpretation , 1973 .

[10]  K. Bathe,et al.  A finite element formulation for nonlinear incompressible elastic and inelastic analysis , 1987 .

[11]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[12]  Jacob Lubliner,et al.  A model of rubber viscoelasticity , 1985 .

[13]  P. Chadwick,et al.  Modified entropic elasticity of rubberlike materials , 1984 .

[14]  Gerhard A. Holzapfel,et al.  Entropy elasticity of isotropic rubber-like solids at finite strains , 1996 .

[15]  C. Miehe,et al.  Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .

[16]  Francisco Armero,et al.  A new unconditionally stable fractional step method for non‐linear coupled thermomechanical problems , 1992 .

[17]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[18]  W. Knauss,et al.  Non-linear viscoelasticity based on free volume consideration , 1981 .

[19]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[20]  J. L. Nowinski,et al.  Theory of thermoelasticity with applications , 1978 .

[21]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[22]  Ray W. Ogden,et al.  Nonlinear Elastic Deformations , 1985 .

[23]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[24]  J. C. Simo,et al.  On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects , 1987 .

[25]  G. Allen,et al.  Thermodynamics of elasticity of natural rubber , 1964 .

[26]  R. Taylor,et al.  Thermomechanical analysis of viscoelastic solids , 1970 .

[27]  Christian Miehe,et al.  Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation , 1995 .

[28]  J. Z. Zhu,et al.  The finite element method , 1977 .

[29]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[30]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  P. Haupt Thermodynamics of Solids , 1993 .

[32]  A. Lion,et al.  A physically based method to represent the thermo-mechanical behaviour of elastomers , 1997 .

[33]  P. Tallec,et al.  Three-dimensional incompressible viscoelasticity in large strains: Formulation and numerical approximation , 1993 .

[34]  Alexander Lion,et al.  Thixotropic behaviour of rubber under dynamic loading histories: Experiments and theory , 1998 .

[35]  Sanjay Govindjee,et al.  Coupled stress-diffusion: Case II , 1993 .

[36]  P. Haupt,et al.  On the mathematical modelling of material behavior in continuum mechanics , 1993 .

[37]  Alexander Lion,et al.  On the large deformation behaviour of reinforced rubber at different temperatures , 1997 .

[38]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[39]  J. Oden,et al.  Analysis of nonlinear, dynamic coupled thermoviscoelasticity problems by the finite element method , 1971 .

[40]  Leslie Morland,et al.  Stress Analysis for Linear Viscoelastic Materials with Temperature Variation , 1960 .

[41]  Stefanie Reese,et al.  A Presentation and Comparison of Two Large Deformation Viscoelasticity Models , 1997 .

[42]  Klaus-Jürgen Bathe,et al.  A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures , 1990 .

[43]  Carlos A. Felippa,et al.  Staggered transient analysis procedures for coupled mechanical systems: Formulation , 1980 .

[44]  G. Allen,et al.  Thermodynamics of rubber elasticity at constant volume , 1971 .

[45]  G. Holzapfel,et al.  Fully coupled thermomechanical behaviour of viscoelastic solids treated with finite elements , 1995 .

[46]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[47]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .