Fe isotope behaviours during sulfide-dominated skarn-typemineralisation

[1]  J. Foden,et al.  Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn–W deposit, Tasmania , 2015 .

[2]  T. Sun,et al.  Epigenetic genesis and magmatic intrusion's control on the Dongguashan stratabound Cu–Au deposit, Tongling, China: Evidence from field geology and numerical modeling , 2014 .

[3]  Xiangkun Zhu,et al.  Iron isotopic constraints on the genesis of Bayan Obo ore deposit, Inner Mongolia, China , 2013 .

[4]  F. Moynier,et al.  Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites , 2012 .

[5]  A. Boyce,et al.  Zn, Fe and S isotope fractionation in a large hydrothermal system , 2012 .

[6]  P. Sossi,et al.  Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania , 2012, Contributions to Mineralogy and Petrology.

[7]  Xiangkun Zhu,et al.  Iron isotope evidence for multistage melt–peridotite interactions in the lithospheric mantle of eastern China , 2012 .

[8]  Li Zhi Geochemical features of Xuanlong type iron ore deposit in Hebei Province and their geological significances , 2012 .

[9]  W. Yue Fe isotope systematics and its implications in ore deposit geology , 2012 .

[10]  A. Bekker,et al.  Multiple Sulfur and Iron Isotope Composition of Magmatic Ni-Cu-(PGE) Sulfide Mineralization from Eastern Botswana , 2012 .

[11]  F. Pirajno,et al.  A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China , 2011 .

[12]  Xiangkun Zhu,et al.  Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu–S–Fe–Au deposit in the Middle–Lower Yangtze valley , 2011 .

[13]  V. Polyakov,et al.  New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems , 2011 .

[14]  Qu Hong-ying SHRIMP U-Pb Dating of Zircon from the Fenghuangshan Quartz Monzodiorite and Granodiorite in Tongling Area,Anhui Province and Its Geological Implication , 2010 .

[15]  A. Bekker,et al.  Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits , 2009, Science.

[16]  M. Lazzeri,et al.  Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study , 2009 .

[17]  A. Bekker,et al.  Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis , 2009 .

[18]  R. Schoenberg,et al.  Iron and lithium isotope systematics of the Hekla volcano, Iceland — Evidence for Fe isotope fractionation during magma differentiation , 2009 .

[19]  Mao Jing,et al.  Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt , 2009 .

[20]  B. Beard,et al.  The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks , 2008 .

[21]  K. Edwards,et al.  Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N , 2008 .

[22]  R. T. Helz,et al.  Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake , 2008, Science.

[23]  C. Manning,et al.  Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: An experimental calibration , 2008 .

[24]  J. Valley,et al.  The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota , 2008 .

[25]  Xu Xiaochun SHRIMP Zircon U-Pb Dating for the Magmatic Rocks in Shizishan Ore-field of Tongling,Anhui Province,and Its Geological Implications , 2008 .

[26]  Tang Suo-han Fe isotope characteristics of early Precambrian pyrite deposits and their geological significance:examples from Shandong and Hebei Provinces , 2008 .

[27]  Tang Suo-han Fe isotope fractionation between magnetite and pyrite during green schist-lower amphibolite facies metamorphism , 2008 .

[28]  Zhu Xiang-kun Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area:implications for Fe source , 2008 .

[29]  He Xue-xian High-precision measurements of Fe isotopes using MC-ICP-MS and Fe isotope compositions of geological reference materials , 2008 .

[30]  M. Whitehouse,et al.  Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland , 2007 .

[31]  R. Clayton,et al.  Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy , 2007 .

[32]  Shenglin Peng,et al.  Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China , 2007 .

[33]  P. Larson,et al.  Variation in Copper Isotope Ratios and Controls on Fractionation in Hypogene Skarn Mineralization at Coroccohuayco and Tintaya, Perú , 2007 .

[34]  F. Blanckenburg,et al.  The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt , 2007 .

[35]  F. Blanckenburg,et al.  Modes of planetary-scale Fe isotope fractionation , 2006 .

[36]  F. Blanckenburg,et al.  Iron isotope fractionation during hydrothermal ore deposition and alteration , 2006 .

[37]  Zhang Da Emplacement Dynamics of Fenghuangshan Pluton (Tongling, Anhui Province): Constraints from U-Pb SHRIMP Dating of Zircons and Structural Deformation , 2006 .

[38]  F. Poitrasson,et al.  Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS , 2005 .

[39]  I. Butler,et al.  Fe isotope fractionation on FeS formation in ambient aqueous solution , 2005 .

[40]  A. Anbar,et al.  Theoretical investigation of iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+: Implications for iron stable isotope geochemistry , 2005 .

[41]  A. Davis,et al.  Clues from Fe Isotope Variations on the Origin of Early Archean BIFs from Greenland , 2004, Science.

[42]  C. German,et al.  The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N , 2004 .

[43]  W. Griffin,et al.  Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit , 2004 .

[44]  Y. Fouquet,et al.  Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes , 2004 .

[45]  D. Newman,et al.  Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[46]  J. R. Lang,et al.  Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit , 2004 .

[47]  Liang-ming Liu,et al.  Prediction of hidden ore bodies by synthesis of geological, geophysical and geochemical information based on dynamic model in Fenghuangshan ore field, Tongling district, China , 2004 .

[48]  J. R. Lang,et al.  Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico , 2003 .

[49]  Henry J Sun,et al.  Application of Fe isotopes to tracing the geochemical and biological cycling of Fe , 2003 .

[50]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[51]  H. Satoh,et al.  Formation of Anhydrous and Hydrous Skarn in Cu-Au Ore Deposits by Magmatic Fluids , 2003 .

[52]  A. S,et al.  Kinetic and equilibrium Fe isotope fractionation between aqueous Fe ( III ) and hematite , 2002 .

[53]  Ulrich Weser,et al.  Mass fractionation processes of transition metal isotopes , 2002 .

[54]  Henry J Sun,et al.  Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions , 2002 .

[55]  A. Anbar,et al.  Iron isotopes in hot springs along the Juan de Fuca Ridge , 2001 .

[56]  T. Mernagh,et al.  Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius , 2001 .

[57]  G. Rossman,et al.  Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy , 2001 .

[58]  G. Xu,et al.  The Xinqiao Cu–S–Fe–Au deposit in the Tongling mineral district, China: synorogenic remobilization of a stratiform sulfide deposit , 2001 .

[59]  V. Polyakov,et al.  The use of Mössbauer spectroscopy in stable isotope geochemistry , 2000 .

[60]  Yuanming Pan,et al.  The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits , 1999 .

[61]  J. W. Hedenquist,et al.  Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines , 1998 .

[62]  Dave B. Mayes,et al.  Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya , 1997 .

[63]  D. Hong,et al.  The granites of south China and their metallogeny , 1995 .

[64]  T. Kwak Fluid inclusions in skarns (carbonate replacement deposits) , 1986 .

[65]  I. Chou,et al.  Solubility of magnetite in supercritical chloride solutions , 1977 .