The covariant technique for the calculation of the heat kernel asymptotic expansion
暂无分享,去创建一个
[1] Julian Schwinger,et al. On gauge invariance and vacuum polarization , 1951 .
[2] B. Dewitt,et al. Quantum field theory in curved spacetime , 1975 .
[3] H. Osborn,et al. Background field calculations in curved spacetime. I: General formalism and application to scalar fields , 1984 .
[4] A. Barvinsky,et al. Beyond the Schwinger-DeWitt technique: Converting loops into trees and in-in currents , 1987 .
[5] I. Avramidi. Background field calculations in quantum field theory (vacuum polarization) , 1989 .
[6] P. Gilkey. The spectral geometry of a Riemannian manifold , 1975 .
[7] L. F. Abbott,et al. The Background Field Method Beyond One Loop , 1981 .
[8] A. V. D. Ven. Explicit counteraction algorithms in higher dimensions , 1985 .
[9] H. Osborn,et al. Two-loop background field calculations for arbitrary background fields , 1982 .
[10] A. Barvinsky,et al. The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity , 1983 .
[11] Zuk. Expansion of the one-loop effective action in covariant derivatives. , 1986, Physical review. D, Particles and fields.
[12] Bryce S. DeWitt,et al. Dynamical theory of groups and fields , 1964 .
[13] A. Barvinsky,et al. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity , 1985 .