iPiasco: Inertial Proximal Algorithm for Strongly Convex Optimization

In this paper, we present a forward–backward splitting algorithm with additional inertial term for solving a strongly convex optimization problem of a certain type. The strongly convex objective function is assumed to be a sum of a non-smooth convex and a smooth convex function. This additional knowledge is used for deriving a worst-case convergence rate for the proposed algorithm. It is proved to be an optimal algorithm with linear rate of convergence. For certain problems this linear rate of convergence is better than the provably optimal worst-case rate of convergence for smooth strongly convex functions. We demonstrate the efficiency of the proposed algorithm in numerical experiments and examples from image processing.

[1]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[2]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[3]  Juan Peypouquet,et al.  A Dynamical Approach to an Inertial Forward-Backward Algorithm for Convex Minimization , 2014, SIAM J. Optim..

[4]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[5]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[6]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[9]  Felipe Alvarez,et al.  Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space , 2003, SIAM J. Optim..

[10]  P. L. Combettes,et al.  Dualization of Signal Recovery Problems , 2009, 0907.0436.

[11]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[12]  Joachim Weickert,et al.  Edge-Based Image Compression with Homogeneous Diffusion , 2009, CAIP.

[13]  Shiqian Ma,et al.  Fast Multiple-Splitting Algorithms for Convex Optimization , 2009, SIAM J. Optim..

[14]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[15]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[16]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[17]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[18]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[19]  David Stutz IPIANO : INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX OPTIMIZATION , 2016 .

[20]  Marc Teboulle,et al.  Performance of first-order methods for smooth convex minimization: a novel approach , 2012, Mathematical Programming.

[21]  S. K. Zavriev,et al.  Heavy-ball method in nonconvex optimization problems , 1993 .

[22]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[23]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[24]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[25]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[26]  Franziska Wulf,et al.  Minimization Methods For Non Differentiable Functions , 2016 .

[27]  A. Moudafi,et al.  Convergence of a splitting inertial proximal method for monotone operators , 2003 .

[28]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[29]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.