Effortless quasi-interpolation in hierarchical spaces
暂无分享,去创建一个
[1] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[2] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[3] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[4] Larry L. Schumaker,et al. Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..
[5] Charles K. Chui,et al. 2. Box Splines and Multivariate Truncated Powers , 1988 .
[6] Adhemar Bultheel,et al. Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..
[7] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[8] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[9] M. Mazure. On a new criterion to decide whether a spline space can be used for design , 2012 .
[10] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[11] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[12] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[13] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[14] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[15] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[16] Pairote Sattayatham,et al. GB-splines of arbitrary order 1 , 1999 .
[17] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[18] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[19] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[20] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[21] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[22] Christophe Rabut. Locally tensor product functions , 2004, Numerical Algorithms.
[23] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[24] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[25] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[26] Tom Lyche,et al. Quasi-interpolants Based on Trigonometric Splines , 1998 .
[27] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[28] T. Lyche,et al. Some examples of quasi-interpolants constructed from local spline projectors , 2001 .
[29] Tom Lyche,et al. Quasi-interpolation projectors for box splines , 2008 .
[30] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[31] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[32] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[33] Charles K. Chui,et al. A multivariate analog of Marsden's identity and a quasi-interpolation scheme , 1987 .
[34] S. Rippa,et al. Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .
[35] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..
[36] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[37] Jörg Peters,et al. Symmetric box-splines on root lattices , 2011, J. Comput. Appl. Math..
[38] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[39] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[40] C. Micchelli,et al. On the approximation order from certain multivariate spline spaces , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[41] Hendrik Speleers,et al. On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.
[42] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[43] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[44] C. D. Boor,et al. Box splines , 1993 .
[45] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[46] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[47] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[48] Hendrik Speleers,et al. Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.
[49] Driss Sbibih,et al. Near-best quasi-interpolants associated with H-splines on a three-direction mesh , 2005 .
[50] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[51] Bernard Mourrain,et al. Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..