Effortless quasi-interpolation in hierarchical spaces

We present a general and simple procedure to construct quasi-interpolants in hierarchical spaces. Such spaces are composed of a hierarchy of nested spaces and provide a flexible framework for local refinement. The proposed hierarchical quasi-interpolants are described in terms of the so-called truncated hierarchical basis. Assuming a quasi-interpolant is selected for each space associated with a particular level in the hierarchy, the hierarchical quasi-interpolants are obtained without any additional manipulation. The main properties (like polynomial reproduction) of the quasi-interpolants selected at each level are locally preserved in the hierarchical construction. We show how to construct hierarchical local projectors, and the local approximation order of the underling hierarchical space is also investigated. The presentation is detailed for the truncated hierarchical B-spline basis, and we discuss its extension to a more general framework.

[1]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[2]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[3]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[4]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[5]  Charles K. Chui,et al.  2. Box Splines and Multivariate Truncated Powers , 1988 .

[6]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..

[7]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[8]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[9]  M. Mazure On a new criterion to decide whether a spline space can be used for design , 2012 .

[10]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[11]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[12]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[13]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[14]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[15]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[16]  Pairote Sattayatham,et al.  GB-splines of arbitrary order 1 , 1999 .

[17]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[18]  Bert Jüttler,et al.  On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..

[19]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[20]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[21]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[22]  Christophe Rabut Locally tensor product functions , 2004, Numerical Algorithms.

[23]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[24]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[25]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[26]  Tom Lyche,et al.  Quasi-interpolants Based on Trigonometric Splines , 1998 .

[27]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[28]  T. Lyche,et al.  Some examples of quasi-interpolants constructed from local spline projectors , 2001 .

[29]  Tom Lyche,et al.  Quasi-interpolation projectors for box splines , 2008 .

[30]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[31]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[32]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[33]  Charles K. Chui,et al.  A multivariate analog of Marsden's identity and a quasi-interpolation scheme , 1987 .

[34]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[35]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[36]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[37]  Jörg Peters,et al.  Symmetric box-splines on root lattices , 2011, J. Comput. Appl. Math..

[38]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[39]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[40]  C. Micchelli,et al.  On the approximation order from certain multivariate spline spaces , 1984, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[41]  Hendrik Speleers,et al.  On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.

[42]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[43]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[44]  C. D. Boor,et al.  Box splines , 1993 .

[45]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[46]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[47]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[48]  Hendrik Speleers,et al.  Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.

[49]  Driss Sbibih,et al.  Near-best quasi-interpolants associated with H-splines on a three-direction mesh , 2005 .

[50]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[51]  Bernard Mourrain,et al.  Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..