Are the visual transients from microsaccades helpful? Measuring the influences of small saccades on contrast sensitivity

Like all saccades, microsaccades cause both spatial and temporal changes in the input to the retina. In space, recent studies have shown that these small shifts precisely relocate a narrow (smaller than the foveola) high-acuity retinal locus on the stimulus. However, it has long been questioned whether the temporal modulations resulting from microsaccades are also beneficial for vision. To address this question, we combined spectral analysis of the visual input to the retina with measurements of contrast sensitivity in humans. Estimation of how different types of eye movements redistribute the power of an otherwise stationary stimulus shows that small saccades contribute more temporal power than ocular drift in the low-frequency range, suggesting a specific role for these movements in the encoding of low spatial frequencies. However, an influence on contrast sensitivity was only found for saccades with amplitudes larger than 30'. Contrast thresholds remained highly similar in the presence and absence of smaller saccades. Furthermore, saccades of all amplitudes, including microsaccades, were strongly suppressed during exposure to the stimulus. These findings do not support an important function of the visual transients caused by microsaccades.

[1]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[2]  Ziad M. Hafed Alteration of Visual Perception prior to Microsaccades , 2013, Neuron.

[3]  Frank Bremmer,et al.  Spatiotemporal profile of peri-saccadic contrast sensitivity. , 2011, Journal of vision.

[4]  Ziad M. Hafed,et al.  On the Dissociation between Microsaccade Rate and Direction after Peripheral Cues: Microsaccadic Inhibition Revisited , 2013, The Journal of Neuroscience.

[5]  M. Lappe,et al.  The spatial pattern of peri-saccadic compression for small saccades. , 2010, Journal of vision.

[6]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[7]  J. L. Hall Hybrid adaptive procedure for estimation of psychometric functions. , 1980, The Journal of the Acoustical Society of America.

[8]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[9]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[10]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[11]  H. Bourgeois,et al.  [Contrast sensitivity]. , 1987, L'Annee therapeutique et clinique en ophtalmologie.

[12]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[13]  R. Steinman,et al.  Small saccades serve no useful purpose: Reply to a letter by R. W. Ditchburn , 1980, Vision Research.

[14]  U. Tulunay-Keesey,et al.  Fading of stabilized retinal images. , 1982, Journal of the Optical Society of America.

[15]  Vision Research , 1961, Nature.

[16]  Chih-Yang Chen,et al.  Postmicrosaccadic Enhancement of Slow Eye Movements , 2013, The Journal of Neuroscience.

[17]  Michael H Herzog,et al.  Different types of feedback change decision criterion and sensitivity differently in perceptual learning. , 2012, Journal of vision.

[18]  Robert Michael Jones,et al.  The effect of micromovements of the eye and exposure duration on contrast sensitivity , 1976, Vision Research.

[19]  Heiner Deubel,et al.  Perceptual consequences of ocular lens overshoot during saccadic eye movements , 1995, Vision Research.

[20]  G. Horwitz,et al.  Effects of microsaccades on contrast detection and V1 responses in macaques. , 2011, Journal of vision.

[21]  R. W. Ditchburn,et al.  Vision with controlled movements of the retinal image , 1959, The Journal of physiology.

[22]  Michele Rucci,et al.  Fixational eye movements, natural image statistics, and fine spatial vision , 2008, Network.

[23]  M. Rolfs Microsaccades: Small steps on a long way , 2009, Vision Research.

[24]  C Galletti,et al.  Single unit responses to visual stimuli in cat cortical areas 17 and 18. III.--Responses to moving stimuli of variable velocity. , 1979, Archives italiennes de biologie.

[25]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[26]  T. Cornsweet Determination of the stimuli for involuntary drifts and saccadic eye movements. , 1956, Journal of the Optical Society of America.

[27]  H. Collewijn,et al.  The significance of microsaccades for vision and oculomotor control. , 2008, Journal of vision.

[28]  G. Legge,et al.  Comparing reading speed for horizontal and vertical English text. , 2010, Journal of vision.

[29]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[30]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[31]  Martina Poletti,et al.  Microscopic Eye Movements Compensate for Nonhomogeneous Vision within the Fovea , 2013, Current Biology.

[32]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  G. W. Beeler,et al.  Visual threshold changes resulting from spontaneous saccadic eye movements. , 1967, Vision research.

[34]  Xoana G. Troncoso,et al.  Microsaccades Counteract Visual Fading during Fixation , 2005, Neuron.

[35]  D H Kelly,et al.  Motion and vision. I. Stabilized images of stationary gratings. , 1979, Journal of the Optical Society of America.

[36]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[37]  H D Crane,et al.  Generation-V dual-Purkinje-image eyetracker. , 1985, Applied optics.

[38]  Ziad M. Hafed,et al.  A Neural Mechanism for Microsaccade Generation in the Primate Superior Colliculus , 2009, Science.

[39]  H. Deubel,et al.  Threshold perception and saccadic eye movements , 1986, Biological Cybernetics.

[40]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[41]  J J Koenderink,et al.  Contrast enhancement and the negative afterimage. , 1972, Journal of the Optical Society of America.

[42]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. , 2008, Journal of vision.

[43]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[44]  Ziad M. Hafed,et al.  Visual Fixation as Equilibrium: Evidence from Superior Colliculus Inactivation , 2012, The Journal of Neuroscience.

[45]  B. Bridgeman,et al.  The role of microsaccades in high acuity observational tasks , 1980, Vision Research.

[46]  M. Rucci,et al.  A model of the dynamics of retinal activity during natural visual fixation , 2007, Visual Neuroscience.

[47]  M. M. Taylor,et al.  PEST: Efficient Estimates on Probability Functions , 1967 .

[48]  John Krauskopf,et al.  Lack of Inhibition during Involuntary Saccades , 1966 .

[49]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[50]  Keith D. White,et al.  Contrast sensitivity during saccadic eye movements , 1978, Vision Research.

[51]  B. L. Zuber,et al.  Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. , 1966, Experimental neurology.

[52]  M. Morrone,et al.  Extraretinal Control of Saccadic Suppression , 2000, The Journal of Neuroscience.

[53]  Xoana G. Troncoso,et al.  Microsaccadic efficacy and contribution to foveal and peripheral vision , 2012 .

[54]  Ralf Engbert,et al.  Microsaccades Keep the Eyes' Balance During Fixation , 2004, Psychological science.