Application of MPC to an active structure using sampling rates up to 25kHz

In this paper we demonstrate the implementation of model predictive control (MPC) for vibration suppression of the first five bending modes of an active structure. For adequate performance, this requires a 5kHz sampling rate, which is achieved using a standard active-set optimisation technique running on a 200MHz digital signal processor. Experimental results show that MPC offers improved performance for this application when compared with other standard approaches.

[1]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[2]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[3]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[4]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[5]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[6]  S. O. Reza Moheimani,et al.  Spatial Control of Vibration: Theory and Experiments , 2003 .

[7]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[8]  A. Wills,et al.  The inherent robustness of constrained linear model predictive control , 2005 .

[9]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[10]  Graham C. Goodwin,et al.  Anti-windup and Model Predictive Control: Reflections and Connections* , 2000, Eur. J. Control.

[11]  Colin H. Hansen,et al.  Active control of vibration , 1996 .

[12]  Andrew J. Fleming,et al.  Subspace based system identification for an acoustic enclosure , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[13]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[14]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[15]  A. Preumont Vibration Control of Active Structures , 1997 .

[16]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[17]  James B. Rawlings,et al.  Model predictive control with linear models , 1993 .

[18]  S. O. Reza Moheimani,et al.  Subspace-Based System Identification for an Acoustic Enclosure , 2002 .

[19]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[20]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[21]  Adrian Wills,et al.  Application of barrier function based model predictive control to an edible oil refining process , 2005 .

[22]  M. Powell On the quadratic programming algorithm of Goldfarb and Idnani , 1985 .

[23]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[24]  K. Schittkowski,et al.  QL : A Fortran Code for Convex Quadratic Programming-User ’ s Guide , 2006 .

[25]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[26]  S. E. Benzley,et al.  Book Reviews : FRACTURE AND FATIGUE CONTROL IN STRUCTURES S.T. Rolfe and J.M. Barsom Prentice-Hall, Inc., Englewood Cliffs, New Jersey , 1979 .