Mixed, componentwise condition numbers and small sample statistical condition estimation of Sylvester equations

SUMMARY We present a componentwise perturbation analysis for the continuous-time Sylvester equations. Componentwise, mixed condition numbers and new perturbation bounds are derived for the matrix equations. The small sample statistical method can also be applied for the condition estimation. These condition numbers and perturbation bounds are tested on numerical examples and compared with the normwise condition number. The numerical examples illustrate that the mixed condition number gives sharper bounds than the normwise one. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.

[2]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[3]  C. Loan The ubiquitous Kronecker product , 2000 .

[4]  Yimin Wei,et al.  A new projection method for solving large Sylvester equations , 2007 .

[5]  Yousef Saad,et al.  On correction equations and domain decomposition for computing invariant subspaces , 2007 .

[6]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[7]  Nicholas J. Higham,et al.  Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..

[8]  Isak Jonsson,et al.  RECSY and SCASY Library Software: Recursive Blocked and Parallel Algorithms for Sylvester-Type Matrix Equations with Some Applications , 2009 .

[9]  Linda R. Petzold,et al.  An error estimate for matrix equations , 2004 .

[10]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part II: two-sided and generalized Sylvester and Lyapunov matrix equations , 2002, TOMS.

[11]  Alan J. Laub,et al.  Sensitivity of the stable discrete-time Lyapunov equation , 1990 .

[12]  Isak Jonsson,et al.  Recursive blocked algorithms for solving triangular systems—Part I: one-sided and coupled Sylvester-type matrix equations , 2002, TOMS.

[13]  Tatjana Stykel,et al.  A modified matrix sign function method for projected Lyapunov equations , 2007, Syst. Control. Lett..

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[16]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[17]  Karabi Datta,et al.  The matrix equation XA − BX = R and its applications , 1988 .

[18]  Nicholas J. Higham,et al.  Perturbation Theory And Backward Error For , 1993 .

[19]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[20]  James Demmel,et al.  Extra-Precise Iterative Refinement for Overdetermined Least Squares Problems , 2009, TOMS.

[21]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[22]  R. Byers A LINPACK-style condition estimator for the equation AX-XB^{T} = C , 1984 .

[23]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[24]  Jianlin Xia,et al.  Applications of statistical condition estimation to the solution of linear systems , 2008, Numer. Linear Algebra Appl..

[25]  W. Niethammer,et al.  SOR for AX−XB=C , 1991 .

[26]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[27]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[28]  Nicholas J. Higham,et al.  Perturbation theory and backward error forAX−XB=C , 1993 .

[29]  Yimin Wei,et al.  Condition Numbers of the Generalized Sylvester Equation , 2007, IEEE Transactions on Automatic Control.

[30]  Julien Langou,et al.  Computing the conditioning of the components of a linear least-squares solution , 2009, Numer. Linear Algebra Appl..

[31]  Charles Kenney,et al.  The sensitivity of the stable Lyapunov equation , 1987 .

[32]  W. Stewart,et al.  The Kronecker product and stochastic automata networks , 2004 .

[33]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[34]  Israel Koltracht,et al.  Mixed componentwise and structured condition numbers , 1993 .

[35]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[36]  Alan J. Laub,et al.  Small-Sample Statistical Condition Estimates for General Matrix Functions , 1994, SIAM J. Sci. Comput..

[37]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[38]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[39]  Lothar Reichel,et al.  On the solution of large Sylvester-observer equations , 2001, Numer. Linear Algebra Appl..

[40]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .