Learning Deep Sigmoid Belief Networks with Data Augmentation
暂无分享,去创建一个
Zhe Gan | Lawrence Carin | David E. Carlson | Ricardo Henao | Ricardo Henao | L. Carin | David Edwin Carlson | Zhe Gan
[1] Radford M. Neal. Connectionist Learning of Belief Networks , 1992, Artif. Intell..
[2] Geoffrey E. Hinton,et al. The Helmholtz Machine , 1995, Neural Computation.
[3] Geoffrey E. Hinton,et al. The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.
[4] Michael I. Jordan,et al. Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..
[5] Brendan J. Frey,et al. Graphical Models for Machine Learning and Digital Communication , 1998 .
[6] Brendan J. Frey,et al. Variational Learning in Nonlinear Gaussian Belief Networks , 1999, Neural Computation.
[7] David Barber,et al. Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks , 1999, NIPS.
[8] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[9] Yee Whye Teh,et al. A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.
[10] Honglak Lee,et al. Sparse deep belief net model for visual area V2 , 2007, NIPS.
[11] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[12] Ruslan Salakhutdinov,et al. Evaluating probabilities under high-dimensional latent variable models , 2008, NIPS.
[13] Ruslan Salakhutdinov,et al. Evaluation methods for topic models , 2009, ICML '09.
[14] Geoffrey E. Hinton,et al. Deep Boltzmann Machines , 2009, AISTATS.
[15] Hugo Larochelle,et al. Efficient Learning of Deep Boltzmann Machines , 2010, AISTATS.
[16] James G. Scott,et al. Local shrinkage rules, Lévy processes and regularized regression , 2010, 1010.3390.
[17] Nando de Freitas,et al. Inductive Principles for Restricted Boltzmann Machine Learning , 2010, AISTATS.
[18] Hugo Larochelle,et al. The Neural Autoregressive Distribution Estimator , 2011, AISTATS.
[19] David B. Dunson,et al. Generalized Beta Mixtures of Gaussians , 2011, NIPS.
[20] Nicholas G. Polson,et al. Data augmentation for support vector machines , 2011 .
[21] David B. Dunson,et al. Lognormal and Gamma Mixed Negative Binomial Regression , 2012, ICML.
[22] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.
[23] Bo Zhang,et al. Scalable Inference for Logistic-Normal Topic Models , 2013, NIPS.
[24] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Tapani Raiko,et al. Enhanced Gradient for Training Restricted Boltzmann Machines , 2013, Neural Computation.
[26] Joshua B. Tenenbaum,et al. Learning with Hierarchical-Deep Models , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[28] Karol Gregor,et al. Neural Variational Inference and Learning in Belief Networks , 2014, ICML.
[29] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[30] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[31] Daan Wierstra,et al. Deep AutoRegressive Networks , 2013, ICML.
[32] Ning Chen,et al. Discriminative Relational Topic Models , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.