Comparative effect of cyclodextrin nanocavities versus organic solvents on the fluorescence of carbamate and indole compounds

[1]  M. Niccoli,et al.  Complexation forces in aqueous solution. Calorimetric studies of the association of 2-hydroxypropyl-β-cyclodextrin with monocarboxylic acids or cycloalkanols , 2007 .

[2]  A. Veglia,et al.  Determination of poorly fluorescent carbamate pesticides in water, bendiocarb and promecarb, using cyclodextrin nanocavities and related media. , 2007, Analytica chimica acta.

[3]  H. Hailes Reaction solvent selection : The potential of water as a solvent for organic transformations , 2007 .

[4]  P. López-Cornejo,et al.  Salt and solvent effects on the kinetics and thermodynamics of the inclusion of the ruthenium complex [Ru(NH3)5(4,4'-bpy)]2+ in beta-cyclodextrin. , 2006, The journal of physical chemistry. B.

[5]  P. Walla,et al.  Solvent- and temperature-tuned orientation of ferrocenyl azide inside beta-cyclodextrin. , 2006, The Journal of organic chemistry.

[6]  J. Pérez‐Juste,et al.  Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. , 2006, Organic & biomolecular chemistry.

[7]  A. Bracamonte,et al.  Hydroxypropyl-β-cyclodextrin effect on the fluorescence of auxin and skatole and on the simultaneous determination of binary mixtures of indole compounds in urine by first derivative spectrofluorimetry , 2005 .

[8]  G. Reineccius,et al.  The effect of solvent interactions on α-, β-, and γ-cyclodextrin/flavor molecular inclusion complexes , 2005 .

[9]  Alicia V. Veglia,et al.  Determination of carbaryl and carbofuran in fruits and tap water by β-cyclodextrin enhanced fluorimetric method , 2003 .

[10]  Yoshihisa Inoue,et al.  Solvent and guest isotope effects on complexation thermodynamics of α-, β-, and 6-amino-6-deoxy-β-cyclodextrins , 2002 .

[11]  A. Veglia,et al.  Hydroxypropyl-beta-cyclodextrin enhanced fluorimetric method for the determination of melatonin and 5-methoxytryptamine. , 2000, The Analyst.

[12]  A. Hedges Industrial Applications of Cyclodextrins. , 1998, Chemical reviews.

[13]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[14]  C. Bohne,et al.  Alcohol Effect on Equilibrium Constants and Dissociation Dynamics of Xanthone−Cyclodextrin Complexes , 1996 .

[15]  J. B. Giorgi,et al.  ESTER CLEAVAGE BY CYCLODEXTRINS IN AQUEOUS DIMETHYL SULFOXIDE MIXTURES. SUBSTRATE BINDING VERSUS TRANSITION STATE BINDING , 1994 .

[16]  Jung Hag Park,et al.  Binding forces contributing to the complexation of organic molecules with β-cyclodextrin in aqueous solution , 1994 .

[17]  I. Warner,et al.  Influence of alcohols on the .beta.-cyclodextrin/acridine complex , 1993 .

[18]  I. Warner,et al.  Solution studies of .beta.-cyclodextrin-pyrene complexes under reversed-phase liquid chromatographic conditions: effect of alcohols as mobile-phase comodifiers , 1991 .

[19]  J. Taraszewska Complexes of β-cyclodextrin with chloronitrobenzenes and with solvents in water + organic solvent mixtures , 1991 .

[20]  Guilford Jones,et al.  Dramatic fluorescence effects for coumarin laser dyes coincluded with organic solvents in cyclodextrins , 1990 .

[21]  Kuppuswamy Kalyanasundaram,et al.  Photochemistry in microheterogeneous systems , 1987 .

[22]  L. Tamarkin,et al.  Melatonin: a coordinating signal for mammalian reproduction? , 1985, Science.

[23]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[24]  M. Radeos,et al.  CYCLOHEXAAMYLOSE COMPLEXATION WITH ORGANIC SOLVENT MOLECULES , 1982 .

[25]  Y. Matsui,et al.  Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. , 1979 .

[26]  S. Ying,et al.  Inhibition of ovulation by melatonin in the cyclic rat. , 1973, Endocrinology.

[27]  C. Strouts,et al.  Analytical chemistry : the working tools , 1955 .