Energy transfer between biacetyl and iodine in the gas phase

[1]  M. Allegrini,et al.  Franck-condon factors for I2 lines arising from Ar+, K+ and He-Ne laser excitation , 1980 .

[2]  E. Zamir,et al.  Distribution of HX vibrational states in four-center elimination reactions: a surprisal analysis and synthesis , 1979 .

[3]  R. Oldenborg,et al.  Quenching of biacetyl (3Au) molecules by near‐resonant and off‐resonant collisional partners , 1978 .

[4]  B. E. Holmes,et al.  Unimolecular rate constants for ring rupture and hydrochloric acid elimination from chemically activated 1-, 2-, and 3-methylchlorocyclobutane and chloromethylcyclobutane , 1978 .

[5]  B. E. Holmes,et al.  Energy disposal by the four-centered unimolecular hydrogen chloride elimination reaction , 1978 .

[6]  K. Freed,et al.  Collision dyanamics of collision induced intersystem crossing processes , 1978 .

[7]  J. Tellinghuisen Intensity factors for the I2 B↔X band system , 1978 .

[8]  J. Kommandeur,et al.  The electronic relaxation of biacetyl in the vapor phase , 1976 .

[9]  K. Freed Theory of collision induced intersystem crossing , 1976 .

[10]  R. Carr,et al.  Phosphorescence quenching of biacetyl vapor by alcohols and iodides , 1976 .

[11]  K. Freed Theory of collision induced intersystem crossing. Application to glyoxal , 1976 .

[12]  H. Rosen,et al.  Design of a simple and inexpensive analog gate , 1975 .

[13]  J. Yardley,et al.  Radiationless decay from triplet state biacetyl molecules with selected vibrational energies , 1974 .

[14]  J. Kommandeur,et al.  Reversible intersystem crossing, fluorescence lifetime lengthening and collisionally induced phosphorescence in biacetyl , 1974 .

[15]  S. Tsuchiya,et al.  Electronic-to-vibrational energy transfer in a collision of CO with Hg(3PO) , 1973 .

[16]  J. Kommandeur,et al.  Small molecule behavior and the 3Bg state of biacetyl , 1973 .

[17]  G. McClelland,et al.  Electronic and vibrational relaxation in biacetyl vapor , 1973 .

[18]  G. Capelle,et al.  Lifetimes and quenching cross sections of I2(B 3ΠOu , 1973 .

[19]  N. A. Borisevich,et al.  Intermolecular Electronic Energy Transfer in the Gas Phase , 1973 .

[20]  R. Levine,et al.  Dynamical theory of vibrational state population distribution in electronic-to-vibrational energy transfer. Application to Hg*-sensitized IR fluorescence of diatomics , 1972 .

[21]  A. Horowitz,et al.  Emission studies of the mechanism of gaseous biacetyl photolysis at 3450, 3650, 3880, and 4358 a and 28°C , 1972 .

[22]  E. Damon,et al.  Lifetime studies of the biacetyl excited singlet and triplet states in the gas phase at 25.deg. , 1972 .

[23]  A. Yarwood,et al.  An external heavy atom effect on biacetyl in the gas phase , 1970 .

[24]  R. Leroy Spectroscopic reassignment and ground-state dissociation energy of molecular iodine , 1970 .

[25]  R. Leroy Molecular Constants and Internuclear Potential of Ground-State Molecular Iodine , 1970 .

[26]  I. Unger,et al.  Effect of an external heavy atom on the photochemistry of monofluorobenzene vapor , 1969 .

[27]  C. Parmenter,et al.  Fluorescence, Phosphorescence, and Triplet Formation in Biacetyl at Low Pressures , 1969 .

[28]  D. Dows,et al.  Vapor-phase bimolecular quenching of the triplet state of biacetyl , 1968 .

[29]  J. Polanyi,et al.  Infrared‐Emission Studies of Electronic‐to‐Vibrational Energy Transfer. II. Hg*+CO , 1967 .

[30]  P. Ausloos,et al.  Quenching of the Triplet State of Acetone and Biacetyl by Azoalkanes , 1965 .

[31]  G. Porter Photooxidation of Biacetyl , 1960 .

[32]  D. McClure,et al.  Electronic and Vibrational States of Biacetyl and Biacetyl-d6. II. Vibrational States1 , 1955 .

[33]  D. McClure,et al.  Electronic and Vibrational States of Biacetyl and Biacetyl-d6I. Electronic States1 , 1955 .

[34]  W. Noyes,et al.  The Fluorescence of Biacetyl Vapor at 4358A , 1954 .

[35]  W. Kaskan,et al.  Mean Lifetime of the Fluorescence of Acetone and Biacetyl Vapors , 1950 .

[36]  G. M. Almy,et al.  Fluorescence of Diacetyl: Quantum Yield and Quenching by Iodine , 1939 .